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ABSTRACT

Video generation is a critical pathway toward world models, with efficient long video inference as
a key capability. Toward this end, we introduce LongCat-Video, a foundational video generation
model with 13.6B parameters, delivering strong performance across multiple video generation tasks.
It particularly excels in efficient and high-quality long video generation, representing our first step
toward world models. Key features include: Unified architecture for multiple tasks: Built on the
Diffusion Transformer (DiT) framework, LongCat-Video supports Text-to-Video, Image-to-Video,
and Video-Continuation tasks with a single model; Long video generation: Pretraining on Video-
Continuation tasks enables LongCat-Video to maintain high quality and temporal coherence in the
generation of minutes-long videos; Efficient inference: LongCat-Video generates 720p, 30fps
videos within minutes by employing a coarse-to-fine generation strategy along both the temporal
and spatial axes. Block Sparse Attention further enhances efficiency, particularly at high resolutions;
Strong performance with multi-reward RLHF: Multi-reward RLHF training enables LongCat-
Video to achieve performance on par with the latest closed-source and leading open-source models.
Code and model weights are publicly available to accelerate progress in the field.

GitHub: https://github.com/meituan-longcat/LongCat-Video
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Figure 1: Examples on Text-to-Video, Image-to-Video and Video-Continuation tasks. Video-Continuation supports long
video generation as well as interactive generation with multiple instructions. We unify these tasks with a single model.
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1 Introduction

World models, which aim to understand, simulate, and predict complex real-world environments, constitute an important
foundation for applying artificial intelligence in real-world scenarios. Video generation models serve as a critical
pathway toward world models by compressing geometric, semantic, physical, and other forms of knowledge through
video generation tasks, thereby enabling effective simulation and prediction of the physical world. Notably, efficient
long video generation is particularly essential.

Over the past years, diffusion modeling and video generation have achieved remarkable breakthroughs. The quality of
generated videos, instruction-following capabilities, and motion realism have all seen substantial improvements. Com-
mercial products—such as Veo [Google, 2024], Sora [OpenAI, 2024], Seedance [Gao et al., 2025], Kling [Kuaishou,
2024], Hailuo [MiniMax, 2024], PixVerse [PixVerse, 2024] and others—and open-source solutions—such as Wanx [Wan
et al., 2025], HunyuanVideo [Kong et al., 2024], Step-Video [Ma et al., 2025a], CogVideoX [Yang et al., 2024] and
others—have demonstrated outstanding performance across various dimensions. These works are increasingly be-
ing integrated into content production pipelines, with widespread applications ranging from user-generated video
content creation to film production, and from entertainment content creation to advertising creativity. Video genera-
tion [NVIDIA] is also establishing a robust foundation for world model applications such as autonomous driving and
embodied AI, with the ongoing improvements in physical simulation and long video generation. These developments
are further accelerating the deployment and evolution of intelligent systems in complex real-world scenarios.

In this report, we introduce LongCat-Video, a foundational video generation model with 13.6B parameters that delivers
strong performance across general video generation tasks, particularly excelling in efficient, high-quality long video
generation. LongCat-Video serves as a robust general-purpose model and marks our first step toward world models.
Key features include:

• Unified architecture for multiple tasks Different use cases demand distinct video generation functionalities. For
example, Text-to-Video is widely adopted for creative content production, while Image-to-Video is preferred when
precise content control is required. LongCat-Video unifies Text-to-Video, Image-to-Video, and Video-Continuation
tasks within a single video generation framework, distinguishing them by the number of conditioning frames—zero
for Text-to-Video, one for Image-to-Video, and multiple for Video-Continuation generation. Through a multi-task
training strategy, LongCat-Video natively supports all these tasks and delivers strong performance across them.

• Long video generation Long-video generation is critical for applications such as digital humans, embodied AI,
and other complex tasks that require extended temporal coherence, which is also a key capability for world model
applications. However, this remains a challenging problem due to generation error accumulated over time. While
various methods [Chen et al., 2025] exist to finetune existing video foundation models for improved long-video
generation, LongCat-Video is natively pretrained on Video-Continuation tasks, enabling it to produce minutes-long
videos without color drifting or quality degradation.

• Efficient inference The computational cost of video generation increases substantially with higher video resolutions
and frame rates, as attention complexity grows quadratically with the number of tokens. Inspired by Seedance [Gao
et al., 2025], Hailuo [MiniMax, 2024] and related works, LongCat-Video adopts a coarse-to-fine strategy: videos are
first generated at 480p, 15fps, and subsequently refined to 720p, 30fps. For high-resolution generation, we train an
expert LoRA module to effectively leverage the base model’s knowledge. Furthermore, we implement a block sparse
attention mechanism, reducing attention computations to less than 10% of those required by standard dense attention.
This design significantly enhances efficiency in the high-resolution refinement stage.

• Strong performance with multi-reward RLHF In post-training, we employ Group Relative Policy Optimization
(GRPO) [Guo et al., 2025] method to further enhance model performance using multiple rewards. Comprehensive
evaluations on both internal and public benchmarks, using human and model-based annotations, demonstrate that
LongCat-Video achieves performance comparable to leading open-source video generation models as well as the
latest commercial solutions. We are releasing the code, model weights, and key modules, including block sparse
attention, to the community. We believe this work will help advance the development of video generation technology
in both academic and industrial domains.

2 Data

Training a high-quality video generation model requires a large-scale, diverse, and high-quality dataset. To meet
these requirements, we have developed a comprehensive data curation pipeline, as illustrated in Figure 2, which
consists of two main stages: 1) Data Preprocessing Stage: This stage includes the acquisition of various data sources,
deduplication, video transition segmentation, and black border cropping, ensuring the diversity and integrity of the
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collected videos; 2) Data Annotation Stage: In this stage, video clips are annotated with multiple metrics and attributes
to enrich the dataset and facilitate downstream tasks. We introduce the data curation pipeline in Section 2.1 and present
the distribution of the curated training data in Section 2.2.

Figure 2: Overview of data curation pipeline. The data preprocessing stage extracts well-segmented video clips from
raw source videos in the data pool. In the data annotation stage, each video clip is annotated with a variety of attributes,
forming a comprehensive metadata database. This metadata database enables the convenient and flexible assembly of
training datasets to support various training stages and objectives.

2.1 Data Curation Pipeline

2.1.1 Data Preprocessing Stage

We collect raw video data from a variety of sources. To eliminate redundant content, we perform deduplication using
source video IDs and MD5 hashes. PySceneDetect [Castellano] and an in-house trained TransNetV2 [Souček and
Lokoč, 2020] are employed to segment source videos into training-friendly clips while maintaining content consistency
within each fragment—an essential factor for effective video generation model training. Additionally, black border
cropping is applied using FFMPEG [FFmpeg Developers, 2014] during the video transition segmentation process to
further improve data quality. Finally, all processed video clips are compressed and packaged, facilitating subsequent
data cleaning and efficient data loading during training.

2.1.2 Data Annotation Stage

To meet the video filtering requirements at different training stages, we annotate video clips with a range of metrics
and store them as a comprehensive metadata library. These metrics include basic video metadata (such as duration,
resolution, frame rate, and bitrate), aesthetic score, blur score, text coverage, watermark detection, etc. Additionally,
motion information is evaluated using extracted video optical flow to assess video dynamics, enabling us to filter out
clips with minimal motion features. This metadata library facilitates flexible and targeted dataset construction for
various training objectives.

The consistency between captions and video content is crucial for ensuring that the video generation model can
accurately follow instructions. As illustrated in Figure 3, we decompose the video information and utilize multiple
models to annotate various aspects of the video content.

① ② ③ ④ ⑤ ⑥

Camera Movement

Shot Size

Lens Type

Type

Color

English

Chinese

En. (summary)

Ch. (summary)

Figure 3: Overview of the video captioning workflow. The main content of each video is captured by a basic captioning
model, and complemented by additional models that extract attributes such as cinematography and visual style. These
elements are integrated to produce varied and informative captions, enhancing the quality and diversity of training data.
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Basic video caption Videos contain complex information, including both appearance features and the temporal
dynamics of actions and events. Many multimodal models are good at describing static images, but struggle to accurately
capture actions and understand temporal relationships. We fine-tune the LLaVA-Video model [Zhang et al., 2024] using
in-house constructed synthetic video-text pairs, improving its ability to describe both visual and temporal aspects. We
also found that the amount and quality of temporal action annotations in the dataset are key to enhancing temporal
understanding. To further improve this, we collected more videos with rich temporal events and used annotated
data from Tarsier2 [Yuan et al., 2025a] for fine-tuning. This significantly boosts the model’s ability to describe and
understand temporal dynamics in videos.

Cinematography and visual style Cinematography in video includes elements such as camera movements, shot sizes,
and lens types. To enable automatic recognition of camera movements, we annotated a dataset with categories including
pan, tilt, zoom, and shark, and trained a dedicated classifier. The annotation of shot sizes and lens types requires
image-level semantic understanding; for this purpose, we employ the Qwen2.5VL model [Bai et al., 2025], which excels
at image analysis and accurately identifies these attributes. Visual style covers a broad range of characteristics, including
general visual types such as realism, 2D anime, and 3D cartoon, as well as finer-grained attributes like color tones.
For visual style annotation, we likewise utilize Qwen2.5VL, leveraging its strong image understanding capabilities to
capture and interpret these diverse visual features.

Caption augmentation To improve the model’s robustness in handling diverse textual inputs, we enrich video
captions through a variety of augmentation techniques. These include translating captions between Chinese and English
to support both languages, as well as generating concise summaries to diversify caption styles. As illustrated in Figure 3,
we further enhance caption diversity by randomly selecting elements from cinematography and visual style categories
and integrating them with the augmented captions. This strategy ensures that each video clip is paired with multiple
styles of textual descriptions, significantly increasing dataset diversity and enhancing the adaptability of the video
generation model.

2.2 Data Distribution

Figure 4: We apply text embedding to video captions and perform clustering analysis. An LLM summarizes each
cluster and assigns tags, enabling unsupervised categorization of the dataset.
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As shown in Figure 4, we categorize video clips into several content types by performing cluster analysis on text
embedding vectors derived from their captions. (e.g., personal interactions, artistic performances, natural landscapes,
etc.). We then assess the data volume and distribution density for each category to evaluate the overall uniformity of the
dataset. Based on this analysis, we implement targeted data supplementation or rebalancing strategies as needed. This
systematic approach allows for dynamic and precise allocation of data subsets tailored to the specific requirements and
objectives of different training phases, thereby optimizing the model training workflow.

3 Method

3.1 Model Architecture

Network Architecture We employ a standard DiT [Peebles and Xie, 2023] architecture with single-stream transformer
blocks. Each block consists of a 3D self-attention layer, a cross-attention layer for text conditioning, and a Feed-
Forward Network (FFN) with SwiGLU [Shazeer, 2020]. For modulation, we utilize AdaLN-Zero [Peebles and Xie,
2023], where each block incorporating a dedicated modulation MLP. To enhance training stability, RMSNorm [Zhang
and Sennrich, 2019] is applied as QKNorm [Henry et al., 2020] within both the self-attention and cross-attention
modules. Additionally, 3D RoPE [Su et al., 2024] is adopted for positional encoding of visual tokens. Detailed model
specifications are summarized in Table 1.

Table 1: Model specifications of LongCat-Video.

Num. of Layers Model Hidden Size FFN Hidden Size Num. of Attn. Heads AdaLN Embedding Size

48 4096 16384 32 512

VAE and Text embedder For latent compression, we employ WAN2.1 VAE [Wan et al., 2025] to convert video
pixels into latent tokens, achieving a compression ratio of 4× 8× 8 along the temporal, height, and width dimensions.
In addition, a patchify operation within the DiT model further compresses the latents with an additional 1× 2× 2 ratio.
As a result, the overall compression ratio from pixels to latents reaches 4 × 16 × 16. For text encoding, we utilize
umT5 [Chung et al., 2023], a multilingual text encoder that supports both English and Chinese captions.

3.2 Unified Model for Multiple Tasks

LongCat-Video is a unified video generation framework that supports Text-to-Video, Image-to-Video, and Video-
Continuation tasks. We define all these tasks as video continuation, where the model predicts future frames conditioned
on a given set of preceding condition frames. The primary difference between all these tasks is the number of condition
frames provided, resulting in a hybrid input format for our network.

Unified Input Representation As illustrated in Figure 5, the network input consists of two sequences: the condition
sequence Xcond ∈ RB×Ncond×H×W×C , which is the noise-free condition frames, and the noisy sequence Xnoisy ∈
RB×Nnoisy×H×W×C , which is the noisy frames to be denoised. Here, Ncond and Nnoisy denote the lengths of the condition
and noisy frames. B is the batch size, H and W are the spatial dimensions, and C is the number of channels. These two
sequences are concatenated along the temporal axis to form the overall model input X ∈ RB×(Ncond+Nnoisy)×H×W×C ,
expressed as X = [Xcond, Xnoisy] where [·] denotes the concatenation operation.

Similarly, the timesteps t are partitioned as t = [tcond, tnoisy], where tcond corresponds to the timesteps of the condition
frames and tnoisy to those of the noisy frames. This configuration of input sequences and timesteps enables the model
to identify different task types based on input patterns. By explicitly structuring both the data and the associated
timesteps, the model can effectively distinguish between various generation modes, thereby enhancing its flexibility
and performance across a range of generative tasks. For the condition frames, we set tcond to 0 to inject clear, lossless
information, while tnoisy is sampled within the range [0, 1]. During loss computation, the contribution from the condition
frames is omitted. The condition sequence remains fixed throughout both training and inference.

Block Attention with KVCache To accommodate the previously described input representation, we have designed a
specialized attention mechanism within the unified model architecture, formulated as follows:

Xcond = Attention(Qcond,Kcond, Vcond), (1)
Xnoisy = Attention(Qnoisy, [Kcond,Knoisy], [Vcond, Vnoisy]), (2)
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Figure 5: Left: Unified transformer for multiple generation tasks. Our model simultaneously supports Text-to-Video,
Image-to-Video (with a single conditioning frame), and Video-Continuation (with multiple conditioning frames) tasks.
The timestep configuration is consistent with the input, and the condition part are fixed to zero. Right: Block Causal
Attention. In self-attention, the updates of the condition tokens are independent of the noisy tokens. In cross-attention,
condition tokens do not participate in cross-attention computation.

where Qcond, Kcond, and Vcond denote the query, key, and value of the condition tokens, and Qnoisy, Knoisy, and Vnoisy
correspond to those of the noisy tokens. This design ensures that the condition tokens are not influenced by the noisy
tokens. Additionally, Xcond does not participate in the cross-attention computation. The computation related to condition
tokens depends solely on the input video condition frames, allowing us to cache the KV features of the condition tokens
and reuse them across all sampling steps, while ensuring consistency between training and inference. This strategy
further enhances the efficiency of long video generation.

3.3 Multi-Reward GRPO Training

3.3.1 GRPO for Flow Matching Modeling

Although GRPO has achieved notable success in large language models [Guo et al., 2025] and image generation [Liu
et al., 2025a, Xue et al., 2025, Li et al., 2025, He et al., 2025], its application to video generation is particularly
challenging due to slow convergence and complex reward optimization. To overcome these issues, we introduce a series
of techniques that significantly enhance both convergence speed and generation quality (Fig. 6) of GRPO for video
generation tasks. The theoretical framework is outlined in Appendix A.1.1, and the complete GRPO training procedure
is summarized in Algorithm 1.

GRPO as stochastic noise search We observe that GRPO for Flow Matching [Lipman et al., 2022] effectively
simulates the gradients dR

dvθ
using stochastic noise search. In our reweighted version of the policy loss (See Appendix

A.1.2 for details.), the gradient of the policy loss with respect to the model parameter θ is as follows:

∇θLpolicy, reweighted(θ) = −
3

2
Âi

t · ϵ · ∇θvθ (3)

It is worth noting that Eq.(3) reveals that in flow matching models, GRPO fundamentally uses the relative advantage Âi
t

and the noise term ϵ in the stochastic differential equation (SDE) sampling [Song et al., 2020] to approximate dR
dvθ

, the
gradient of the reward with respect to the velocity field, following the chain rule decomposition:
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Algorithm 1 LongCat-Video’s GRPO Training for Flow Matching Models

Require: Prompt distribution C, group size G, total timesteps T , reward models {Rk}nk=1, weights {wk}nk=1
Ensure: Optimized policy parameters θ

1: Initialize policy parameters θ, reference policy πref
2: repeat
3: Sample batch of prompts {cj}Bj=1 ∼ C
4: for each prompt cj in parallel do
5: // Fix the initial noise and SDE timestep (Sec. 3.3.1)
6: Sample initial noise xT ∼ N (0, I)
7: Sample critical timestep t′ ∼ U(0, T ′ − 1)
8: for i = 1 to G do
9: Generate trajectory {xi

t}Tt=0:
10: for t = T to 0 do
11: if t = t′ then
12: xi

t−1 ← xi
t + driftθ(xi

t, t, cj)∆t+ σt

√
∆tϵ // SDE step with truncated noise schedule (Sec. 3.3.1)

13: else
14: xi

t−1 ← xi
t + driftθ(xi

t, t, cj)∆t // ODE step
15: end if
16: end for
17: Compute rewards {Rk(x

i
0, cj)}nk=1

18: end for
19: for k = 1 to n do
20: Compute µk ← mean({Rk(x

i
0, cj)}Gi=1)

21: Compute σj
k ← std({Rk(x

i
0, cj)}Gi=1)

22: Collect {σj
k}Bj=1 from all processes

23: Compute σmax,k ← max({σj
k}Bj=1) // max group std (Sec. 3.3.1)

24: for i = 1 to G do
25: Âi

k,t′ ←
Rk(x

i
0,cj)−µk

σmax,k

26: end for
27: end for
28: for i = 1 to G do
29: // Weighted relative advantage for multi-reward (Sec. 3.3.2)
30: Âi

total ←
∑n

k=1 wkÂ
i
k,t′

31: // Reweighting of the Policy and KL Loss (Sec. 3.3.1)

32: λpolicy ←
√

t′
T

∆ t′
T (1− t′

T )

33: λKL ← t′

∆ t′
T (1− t′

T )

34: Li
policy ← λpolicy · rit′(θ) · Âi

total

35: Li
KL ← βλKL ·DKL(πθ∥πref)

36: Li ← Li
policy − Li

KL
37: end for
38: end for
39: Ltotal ← 1

B·G
∑B

j=1

∑G
i=1 Li

40: θ ← θ − η∇θLtotal
41: until convergence
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Figure 6: Our GRPO method significantly improves the video generation quality.

dR

dθ
=

dR

dvθ
· dvθ
dθ

(4)

where the GRPO framework provides the specific form:

dR

dvθ
≈ −3

2
Âi

t · ϵ (5)

Based on this finding, we design the following strategies.

Fix the stochastic timestep in SDE sampling Previous GRPO methods for Flow Matching sample trajectories using
SDE sampling at all timesteps. This approach introduces temporal credit assignment ambiguity, as the reward is not
accurately attributed to the specific timesteps that contributed to the final outcome. Instead, the reward is uniformly
distributed across all timesteps, including those that may not have made a positive contribution. To address this
ambiguity, we introduce a modified sampling scheme that isolates reward variation. Similar to concurrent works [He
et al., 2025, Zhou et al., 2025], for each prompt c, samples share the same initial noise latent, and a single critical
timestep t is randomly selected from the first T ′ timesteps (T ′ < T ). SDE sampling with noise injection is applied only
at t, while all other timesteps use deterministic ordinary differential equation (ODE) sampling. This approach enables
precise credit assignment and leads to more stable, interpretable policy optimization. See Appendix A.1.3 for details.

Truncated noise schedule To enhance the diversity of SDE sampling, we adopt an amplified noise schedule with
coefficient a = 1. However, this aggressive schedule can cause instability at high noise levels, as the diffusion coefficient
σt

√
∆t becomes excessively large when t approaches 1. We introduce a threshold-based clipping mechanism for the

diffusion term. Specifically, the diffusion coefficient is clipped when it exceeds a predefined threshold τ :

σt

√
∆t→ min

(
σt

√
∆t, τ

)
.

When clipping occurs, we set σt in the drift term to τ/
√
∆t for consistency. In our experiments, τ is set to 0.45.
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Policy and KL Loss reweighting The gradient of the policy loss with respect to θ is as follows (See Appendix A.1.2
for details):

∇θLpolicy(θ) = −
3

2
Âi

t ·
√

∆t(1− t)

t
· ϵ · ∇θvθ (6)

We observe that the gradient magnitude is scaled by the factor κ(t,∆t) =
√

∆t(1−t)
t , which introduces two key

optimization challenges: (1) Vanishing gradient: as t→ 1, κ(t,∆t) approaches zero, causing the gradient magnitude
to vanish in high noise stages; (2) Small timestep: video generation models typically use large shifts in timestep
scheduling for both training and inference, resulting in small ∆t values that further suppress the gradient magnitude.

To address these issues, we introduce a reweighting coefficient defined as:

λpolicy(t,∆t) = κ(t,∆t)−1 =

√
t

∆t(1− t)
, Lpolicy, reweighted(θ) = λpolicy(t,∆t) · Lpolicy(θ) (7)

Similarly, we also introduce a KL reweighting coefficient (See Appendix A.1.2 for details):

λKL(t,∆t) = kKL(t,∆t)−1 =
t

∆t(1− t)
, LKL, reweighted(θ) = λKL(t,∆t) ·DKL(θ) (8)

The reweighting coefficient effectively normalizes the gradient magnitude, eliminating the problematic temporal and
step-size dependencies. This ensures stable and efficient optimization throughout the GRPO training (Figure 7a).

(a) (b)

Figure 7: Ablation experiments on: (a) Policy and KL loss reweighting; (b) Max group standard deviation.

Max group standard deviation In the standard GRPO formulation, each prompt corresponds to a group of samples,
and the relative advantage is computed using the group-specific standard deviation. However, reward dispersion varies
across groups, and those with smaller standard deviations may yield unreliable advantage estimates due to inherent
reward model inaccuracies.

To improve training stability, we address this by replacing the group-specific standard deviation with the maximum
standard deviation observed across all groups. This adjustment reduces the gradient weight for samples from groups
with potentially unreliable advantage estimates, while preserving the signal from groups with more reliable reward
distributions. The modified advantage calculation becomes:

Âi
k,t =

Rk

(
xi
0, cj

)
− µk

σmax
(9)

where µk is the group mean for reward k, σmax = maxj σ
j
k is the maximum standard deviation across all groups for

reward k. This modification ensures that samples from groups with small standard deviations receive appropriately
scaled gradient updates and the training process becomes more robust to reward model inaccuracies (Figure 7b).
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3.3.2 Reward Models and Multi-Reward Training

Figure 8: GRPO reward curves from the multi-reward training of LongCat-Video.
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Figure 9: Reward hacking with single reward. Our multi-reward training approach prevents reward hacking for any
single reward by establishing a balance among multiple rewards. For instance, the motion reward counteracts the static
tendency induced by HPSv3 hacking while still leveraging HPSv3 to enhance visual quality.

Reward Models We utilize three specialized reward models to optimize visual quality (VQ), motion quality (MQ),
and text-video alignment (TA) during training.

• Visual Quality Assessment: For VQ evaluation, we use HPSv3 [Ma et al., 2025b] as our base model, which
inherently assesses both visual quality and text-video alignment. We combine two types of HPSv3-based rewards:
HPSv3-general, which is the mean score of all frames measured with the general prompt "A high-quality image" and
focuses exclusively on visual quality; and HPSv3-percentile, which is measured using the video caption to evaluate
text-video alignment and uses the scores of the top 30% of all frames to mitigate the impact of low rewards resulting
from content inconsistency caused by temporal changes.

• Motion Quality Assessment: For MQ evaluation, we employ a VideoAlign [Liu et al., 2025b]-based model fine-
tuned on internal annotated datasets. To mitigate the model’s preference for specific color, we use grayscale videos
for both training and inference, which ensures the assessment focuses on motion characteristics rather than color
attributes. Additionally, as illustrated in the validation loss curves during training (Figure 20), models trained with
grayscale videos show a delayed increase in validation loss compared to those trained with RGB videos, indicating
improved generalization and reduced overfitting in MQ reward model training.

• Text-Video Alignment Assessment: For TA evaluation, we also employ a VideoAlign-based model fine-tuned on
internally annotated data. Unlike MQ evaluation, we retain the original color input processing to preserve the model’s
ability to assess semantic correspondence between text prompts and video content.

Multi-Reward Training For multi-reward GRPO training, the effective relative advantage in the policy loss for
multi-reward optimization is exactly the weighted sum of the individual relative advantages (Refer to Appendix A.1.4
for details). Therefore, the corresponding policy loss becomes:
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Lpolicy, multi(θ) = rit(θ) ·

(
n∑

k=1

wk · Âi
k,t

)
(10)

where each relative advantage Âi
k,t is computed independently for reward Rk using group normalization.

In practice, the combination of multiple reward signals provides comprehensive guidance for the policy optimization
process, ensuring balanced improvements in all aspects of video generation quality as shown in Figure 8. More
importantly, the mutual constraints imposed by multiple rewards create a natural regularization effect that prevents
over-optimization on any single metric and reduces the likelihood of reward hacking.

3.4 Efficient Video Generation

Inference efficiency remains a challenge for video generation, particularly for generating high-resolution, high-frame-
rate videos. Therefore, we have introduced several optimizations to enhance inference efficiency. We distill the base
model to reduce the necessary sampling steps. Additionally, we deploy coarse-to-fine (C2F) generation (Section 3.4.1)
and block sparse attention (BSA) (Section 3.4.2) to further reduce the time cost in high-resolution video generation. As
shown in Table 2, combining these strategies increases inference efficiency by more than 10×, allowing 720p, 30fps
video generation within minutes. Additionally, we found that the coarse-to-fine generation strategy not only reduces
inference cost but also improves generation quality, particularly enhancing visual details, as illustrated in Figure 10.

Table 2: Speed comparison under different inference settings.

Variant LCM C2F BSA Sampling Steps Latency Speedup

480p× 93 frames ✗ ✗ ✗ 50 341.5s -

480p× 93 frames ✓ ✗ ✗ 16 61.3s -

720p× 93 frames ✗ ✗ ✗ 50 1429.5s 1.0×
720p× 93 frames ✓ ✗ ✗ 16 244.6s 5.8×

480p× 93 frames→ 720p× 93 frames ✓ ✓ ✗ 16/5 135.3s 10.6×
480p× 93 frames→ 720p× 189 frames ✓ ✓ ✗ 16/5 302.9s 4.7×
480p× 93 frames→ 720p× 93 frames ✓ ✓ ✓ 16/5 116.5s 12.3×
480p× 93 frames→ 720p× 189 frames ✓ ✓ ✓ 16/5 142.0s 10.1×
∗ The tests were conducted on a single H800 GPU with FlashAttention3 [Shah et al., 2024].

3.4.1 Coarse-to-Fine Generation

Training and inference on high-resolution, high-FPS videos incur substantial computational costs due to long token
sequences. To address this, we propose a coarse-to-fine generation paradigm (Figure 11): first, the model generates
a 480p, 15fps video; second, this video is upscaled to 720p, 30fps using trilinear interpolation and refined by a
refinement expert. This approach greatly improves efficiency and enhances image quality and high-frequency details.
The refinement expert is trained with LoRA fine-tuning on the base model. Since the refinement task is similar to the
base model’s generation task but follows a different denoising path, LoRA enables efficient adaptation while reusing
the base model’s capabilities. Besides, LoRA fine-tuning is decoupled from other training stages, converges faster, and
significantly reduces memory usage.

Refinement using Flow Matching The training objective of refinement expert is to learn the transformation between
the distribution of upsampled 480p, 15fps videos and the distribution of 720p, 30fps videos. We also utilize flow
matching to model the mapping between these two distributions. The input to the network for the refinement stage
training, denoted as xt′ , can be represented as follows:

xt′ = x0 + (xthresh − x0) ·
t′

tthresh
, t′ ∈ [0, tthresh], (11)

xthresh = (1− tthresh) · xup + tthresh · ϵ, ϵ ∼ N (0, I), (12)
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Figure 10: Comparison of native 480p, native 720p, and coarse-to-fine 720p generation. The coarse-to-fine strategy
produces texture details and quality that surpass those of the native 720p generation and can also correct local distortions.

xup = Encode(Upsample(Decode(xlr))), (13)

where xlr is the output of the first stage, which is a latent representation of a low-resolution, low-frame-rate video, xup

represents the video latent obtained by applying the upsampling operation, denoted as Upsample, to xlr in the RGB
space, Encode and Decode respectively represent the encoding and decoding processes of the VAE.

To preserve the layout and structural information of low-resolution result, we apply a moderate level of noise, tthresh, to
xup. The result after adding noise is xthresh, which serves as the starting point for the refinement stage flow matching
path, with the endpoint being x0, the 720p, 30fps video latent. We sample noise intensity t′ within the range from 0 to
tthresh for training. It should be noted that to ensure the numerical range of the ground truth in the refinement stage
aligns with the base model, we need to apply numerical scaling to velocity x0 − xthresh. Finally, the ground truth vt′
can be expressed as:

vt′ =
x0 − xthresh

tthresh
. (14)

This design is well-suited to the LoRA training mode, enabling significant reuse of the model’s existing knowledge.
It is evident that when tthresh is equal to 1, the refinement stage training degenerates into a standard flow matching
training process between the standard Gaussian distribution and the high-resolution video distribution. In practice,
we set tthresh to 0.5, and the refinement stage requires only 5 sampling steps, significantly improving efficiency. We
further combine block sparse attention with the coarse-to-fine generation process, which accelerates sampling even
further. Compared to the native generation process of 720p, 15fps videos, despite the token sequence length doubling,
we achieve a 10.1× acceleration in 720p, 30fps generation.

Refinement with Condition Frames In addition to the Text-to-Video task, we also support the refinement for the
Image-to-Video and Video-Continuation tasks. In the conditional coarse-to-fine generation, we first use low-resolution
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Figure 11: The coarse-to-fine generation processes for Text-to-Video, Image-to-Video, and Video-Continuation tasks.
The green arrows indicate the low-resolution generation phase, while the orange arrows represent the refinement phase.
Compared to Text-to-Video, Image-to-Video and Video-Continuation include additional configuration for the condition.

condition frames to generate a low-resolution video. This process can be represented as follows:

Xlr = BaseModel([Encode(Xcond
lr ), ϵ]), ϵ ∼ N (0, I), (15)

Xcond
lr = Downsample(Xcond

hr ), (16)

where Xcond
hr represents the high-resolution condition RGB frames, Xcond

lr is the low-resolution condition RGB frames
obtained using the spatial-temporal downsampling operation Downsample, and Xlr represents the non-condition
part of the low-resolution video generated in the first stage. The generation process of the refinement stage can be
represented as follows:

Xup = [Xcond
hr , Upsample(Xlr)], (17)

Xsr = Refinement(AddNoise(Encode(Xup))). (18)

At the beginning of the refinement stage, we concatenate the high-resolution version of the condition RGB frames with
trilinear upsampled Xlr, this concatenation is denoted as Xup. Then, we add noise at level tthresh to VAE-encoded
Xup. At this point, we have constructed the input for the refinement expert. The high-resolution video obtained after
multiple steps of denoising is represented as Xsr. Through this design, we simultaneously support multiple tasks in
refinement training, providing the coarse-to-fine generation with more application scenarios.

3.4.2 Block Sparse Attention

The computational speed of both training and inference for high-resolution video generation poses a major bottleneck
for practical applications, primarily due to the quadratic complexity growth of self-attention with increasing token
count. Trainable sparse attention mechanisms have demonstrated their effectiveness in large language models [Yuan
et al., 2025b, Lu et al., 2025], and concurrent research has also validated their efficacy in video generation tasks [Zhang
et al., 2025]. Given the high redundancy inherent in video latent representations, we developed a trainable sparse
attention operator that significantly accelerates both training and inference. By retaining less than 10% of the original
computational load, we can achieve near-lossless generation quality. Please refer to Appendix A.2 for details. Here we
highlight some key points:

• Our 3D block sparse attention is open-sourced together with the base model, including both forward and backward
implementations.This makes it convenient for the community to use as a modular component in their own projects.
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Figure 12: Illustration of 3D block sparse attention for query qi and keys {kj}THW
j=1 . (a) Partition qi and all kj into

non-overlapping 3D blocks of size t× h× w. The block containing qi is identified, and a similarity score is computed
between this query block and each key block using their average values. (b) Select the top-r key blocks with the highest
similarity scores. (c) Compute the standard attention between qi and all keys within the selected r key blocks.

• We implemented ring block sparse attention to support context parallelism (See A.2.2 for details), which supports
efficient training of large-scale models.

• Users can implement other sparse attention patterns based on our implementation, such as cumulative distribution
function (CDF) based or block-wise 2D+1D, by customizing the block selection mask (See A.2.3 for details).

• In our experiments, the top-k1 block sparse attention pattern achieved lossless sparse attention adaptation after training,
eliminating the need for specially designed patterns; for simplicity, LongCat-Video adopted the top-k approach.

4 Training

As illustrated in Figure 13, the overall training procedure comprises three main components. The process begins with
base model training, which includes progressive pre-training and supervised fine-tuning (SFT) to produce a base video
generation model. This is followed by Reinforcement Learning from Human Feedback (RLHF) training, where Group
Relative Policy Optimization (GRPO) is employed to enhance model performance by aligning outputs with human
preferences. The final component is acceleration training, which involves model distillation and the development of a
refinement expert LoRA module for coarse-to-fine generation. For both RLHF and acceleration training, we utilize the
LoRA mechanism to facilitate the stacking of various enhancements and to ensure flexibility for future extensions.

4.1 Base Model Training

Flow Matching We employ the flow matching framework to model the diffusion process. During training, given
a noise-free video latent x0, a random noise ϵ ∼ N (0, I), and a timestep t ∈ [0, 1], the network predicts the velocity
vt =

dxt

dt of xt moving towards x0 at time t. xt can be represented as the linear interpolation as

xt = (1− t) · x0 + t · ϵ. (19)

The ground truth velocity is
vt = x0 − ϵ. (20)

The network output can be denoted as vpred(xt, c, t; θ), where c represents the task conditions (text prompt, conditional
image/video latents), and θ represents the model parameters. The model parameters θ are optimized by minimizing the
mean squared error (MSE) between model prediction vpred and the ground truth velocity vt, denoted as a loss function

L = Eϵ,x0,c,t ∥vpred(xt, c, t; θ)− vt∥2 . (21)

1Note: To avoid confusion between top-k and the abbreviation ’k’ for ’key’, we refer to it as top-r in other parts of the report.
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Figure 13: Overview of training process.

During training, we sample timestep t from a uniform distribution, and apply a logit-normal-like loss weighting
scheme. We found that this strategy is more stable than sampling timesteps directly from the logit-normal distribution.
Additionally, we adaptively adjust the timestep shift based on the volume of noise tokens [Esser et al., 2024], such that
higher noise levels are preferred for videos with higher resolution and longer length.

Progressive Pre-training During pretraining, we employ a progressive training strategy to improve efficiency, as
outlined in Table 3. The training process consists of multiple stages, beginning with model pre-training on low-
resolution images to facilitate efficient learning of semantic and visual representations. After the image training stage
reaches convergence, the process transitions to a dedicated video training phase, where the model captures fundamental
motion dynamics. Following this, the training proceeds through several multi-task stages, during which Text-to-Image
(T2I), Text-to-Video (T2V), Image-to-Video (I2V), and Video-Continuation (VC) tasks are jointly optimized. For Video-
Continuation (VC) task, we also perturb conditional frames with per-frame independent noise levels [Chen et al., 2024]
to enhance robustness to color drift. These stages progress from low-resolution to high-resolution settings. At each
stage, training samples are assigned to specific size buckets according to the closest aspect ratio, thereby maximizing
computational efficiency. The AdamW [Loshchilov and Hutter, 2017] optimizer is used with a constant learning rate
within each stage, and the learning rate is gradually reduced as training progresses to subsequent stages.

Table 3: Outline of the progressive training stages.

Training tasks Size bucket Learning rate Iterations

T2I 256p 1e-4 285k

T2I + T2V 256p× 93 frames 1e-4 140k

T2I + T2V + I2V + VC 256p× 93 frames 5e-5 164k

T2I + T2V + I2V + VC 480p× 93 frames 5e-5 36k

T2I + T2V + I2V + VC 480p+ 720p× 93 frames 2e-5 53k

Supervised Fine-Tuning (SFT) After pretraining, we conduct a supervised fine-tuning (SFT) stage using a carefully
curated, high-quality dataset. The data is filtered based on multiple metrics, including aesthetic score, video quality, and
motion quality, among others. To ensure balanced category representation, samples are selected inversely proportional to
their density in the caption embedding space. In addition to the general high-quality dataset, we incorporate specialized
datasets to further enhance the model’s instruction-following capabilities, particularly for camera motion and visual
style.

Table 4: Specifications of supervised fine-tuning (SFT) stage.

Training Tasks Size Bucket Learning rate Iterations

T2I + T2V + I2V + VC 480p+ 720p× 93 frames 1e-5 7.5k
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4.2 RLHF Training

After training the base model, we further improve its performance through a post-training stage that incorporates multiple
video quality-related rewards using the GRPO method as described in Section 3.3. The key training specifications are
listed in Table 5. For the complete experimental setup, please refer to Appendix A.1.5. We employ only Text-to-Video
tasks in the GRPO training, and find that the improvements of instruction-following, visual quality and motion quality
generalize well to Image-to-Video and Video-Continuation tasks. Proposing task-specific rewards for each task (e.g.
quality degradation penalty of long-video generation for Video-Continuation) remains a future work.

Table 5: Specifications of RLHF training stage.
Training tasks Size bucket Group size Prompts per step Sampling steps SDE steps range Learning rate Iterations

T2V 480p+ 720p× 93 frames 4 64 16 [0, 6] 1e-4 0.5k

4.3 Acceleration Training

As described in Section 3.4, we distill the model and train a refinement expert module to enable efficient inference.

Distillation training We have adopted Classifier-Free Guidance (CFG) distillation and consistency model (CM)
distillation [Ren et al., 2024, Wang et al., 2024] to enhance model inference speed. In the CFG distillation step, we
distill a general negative prompt using CFG-Zero [Fan et al., 2025] with a default guidance strength of 4.0. The
combination of CFG distillation and CM distillation enables inference with 16 steps with quality comparable to
inference results with more than 50 steps. We use a LoRA training strategy to allow flexible stacking of various model
enhancement and further extensions.

Table 6: Specifications of distillation training.

Stage Training Tasks Size Bucket Learning rate Iterations

CFG distillation T2I + T2V + I2V + VC 480p+ 720p× 93 frames 5e-5 2k

CM distillation T2I + T2V + I2V + VC 480p+ 720p× 93 frames 5e-5 3k

Refinement expert training During the refinement LoRA training process, we initially use full attention for training.
Once the loss converges and stabilizes, we activate BSA to continue training. We set the sparsity of BSA to 93.75% and
the initial noise intensity for the refinement stage to 0.5. In terms of training data, we use Gray-Level Co-occurrence
Matrix(GLCM) [Haralick et al., 2007] filter to keep only data with rich texture details for training. We apply a series of
degradation operations to the training data to enhance the model’s ability to refine details and improve robustness. Note
that we train the refinement expert on data with mixed frame rates, enabling it to support both spatial-only refinement
and spatial-temporal refinement.

Table 7: Specifications of refinement expert training.

Training Stage Sparsity tthresh Size bucket Learning rate Iterations

Full Attention - 0.5 720p× 93 or 189 frames 5e-5 500

Sparse Attention 93.75% 0.5 720p× 93 or 189 frames 5e-5 500

4.4 Training Infrastructure

Our distributed training infrastructure incorporates mechanisms such as DeepSpeed-Zero2 [Rasley et al., 2020],
Context Parallelism, Ring Attention, and Activation Checkpointing, enabling efficient training of video generation
models at the 13B-parameter scale. To support mixed-resolution training, we adopt a bucket-based strategy that groups
data with similar resolutions into the same bucket for batch processing. Furthermore, we employ a cache mechanism to
eliminate computation bubbles arising from VAE operations across different ranks, thereby improving computational
efficiency and resource utilization. These methods collectively enable the training process to achieve Model Flops
Utilization (MFU) rates ranging from 33% to 38%.
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5 Evaluation

This section presents a comprehensive evaluation of LongCat-Video’s performance across multiple dimensions of video
generation quality. We establish rigorous assessment protocols through both internal benchmarks and public evaluation
frameworks, providing a holistic view of the model’s capabilities in Text-to-Video and Image-to-Video generation tasks.
The subsequent subsections present representative examples of LongCat-Video outputs across various video generation
tasks.

5.1 Internal Benchmarks

We introduce an internal benchmarking suite to assess model performance across two core tasks: Text-to-Video
and Image-to-Video. The benchmark encompasses a total of 1,628 samples, categorized into 1,228 Text-to-Video
cases (evaluated via 500 human and 728 automatic assessments) and 400 Image-to-Video cases. For Text-to-Video,
evaluation is conducted based on the following four key dimensions:

• Text-Alignment evaluates whether the video comprehensively encompasses the information conveyed in the text and
accurately interprets the relevant semantic expressions. It includes precise understanding of descriptions related to
objects, people, scenes, styles, and other key elements.

• Visual quality is assessed from two perspectives: plausibility and realism. Plausibility focuses on the visual
presentation of the video, examining whether it adheres to objective physical principles and identifying any issues
such as distortion or unnatural appearances. Realism evaluates whether the scenes and subjects depicted in the video
possess a sense of authenticity, aiming to avoid the presence of unrealistic elements.

• Motion quality assesses the normalcy of motion within the video. It examines whether motion trajectories are
coherent and actions are smooth, in accordance with physical laws. For human motion, object motion, and camera
motion, the evaluation determines whether each type of movement reflects realistic behavior, avoiding issues such as
prolonged stillness or excessive jitter.

• Overall quality represents a comprehensive quality score for the generated video based on the aforementioned
sub-dimensions.

For Image-to-Video, we further incorporate an “Image-Alignment” dimension in addition to the above four dimensions
for evaluation:

• Image-Alignment evaluates the extent to which the generated video faithfully preserves key attributes and relation-
ships of both the subject and background from the reference image, while maintaining the overall style of the original
reference.

Evaluation Protocol The evaluation of video result in this report comprises both human and automatic model-based
assessments. For human evaluation, following prior practice [Gao et al., 2025], we employ two complementary
methodologies: absolute Mean Opinion Score (MOS) ratings and relative Good-Same-Bad (GSB) assessments. The
former utilizes a 5-point scale for pointwise evaluation to quantitatively measure perceptual quality across various
dimensions. Detailed descriptors were established for each scoring tier to ensure metric interpretability. The final score
for each model is calculated as a weighted (2:1) average of human evaluation and automatic evaluation. The latter
adopts a pairwise comparative approach, which provides more discriminative model performance rankings.

Quality Control To ensure annotation quality, a comprehensive and rigorous pre-annotation training process was
implemented for all annotators. Each video was independently annotated by three annotators. In cases where significant
discrepancies were identified between any two annotations, two additional annotators were introduced to reassess the
video. The final score for each video was derived by averaging the ratings provided by all involved annotators. This
consensus-based approach enhances the reliability and objectivity of the annotation outcomes.

For automatic evaluation, we have specifically trained a vision-language judge model based on high-quality human-
annotated data, capable of quantitatively evaluating text alignment, visual quality, and motion quality. Internal
evaluations demonstrate that this judge model achieves correlations consistently exceeding 0.92 with human assessments
across all dimensions.

Data Taxonomy for Text-to-Video Evaluation Our text-to-video evaluation benchmark comprises two distinct
subsets: 500 prompts designed for human evaluation and 728 for automatic evaluation. The human evaluation subset is
characterized by its exceptional semantic diversity, spanning 48 distinct categories. This design ensures a balanced
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assessment, preventing the overrepresentation of any single capability, with the most frequent category constituting
only 39.2% of the prompts. Critically, the benchmark features a long tail of specialized tasks: 58.3% of categories
appear with a frequency of 5% or less. These range from foundational abilities such as Entity Generation and Action to
complex functions like Physical Simulation and Inductive Reasoning. Furthermore, the prompts exhibit significant
structural diversity. Their lengths follow a pronounced bimodal distribution: 34.8% are concise (≤20 words) and 34.6%
are highly detailed (≥51 words), with an overall range of 4 to 121 words. To ensure comprehensive coverage for the
automatic evaluation subset, we curate prompts from high-quality public datasets, including T2VCompbench [Sun
et al., 2025] and MovieGen [Polyak et al., 2024], and supplement them with in-house prompts to cover a wide array of
video generation scenarios.

Text-to-Video Evaluation Leveraging our internal benchmark, we first conducted a comprehensive comparative
evaluation of LongCat-Video against several leading video generation models in text-to-video setting. Specifically, we
compare with two advanced proprietary models Veo3 [Google, 2024] and PixVerse-V5 [PixVerse, 2024], as well as the
current SOTA open-source model Wan 2.2-T2V-A14B [Wan et al., 2025].

The MOS evaluation results are illustrated in Figure 14. Our analysis reveals that LongCat-Video demonstrates a
highly competitive and well-balanced performance. A standout achievement is its excellence in Visual Quality, where
it achieves a score that is nearly on par with the top performer, Wan 2.2, and significantly surpasses PixVerse-V5,
which shows a clear deficit in this area. In terms of Overall Quality, LongCat-Video establishes itself as a top-tier
model, achieving a score superior to both PixVerse-V5 and Wan 2.2-T2V-A14B. While Veo3 leads in this category, its
advantage is built upon superior text-alignment and motion scores. In contrast, our model provides a more consistent,
high-quality experience. For Text-Alignment, LongCat-Video delivers robust results, proving its strong capability in
semantic understanding, though Veo3 sets a particularly high benchmark.
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Figure 14: Text-to-Video MOS evaluation results on our internal benchmark.

The GSB evaluation results are shown in Figure 15. The user preference study indicates that LongCat-Video’s
performance, while trailing the state-of-the-art closed-source model Veo3, is highly competitive and on par with other
leading proprietary models like PixVerse-V5. In the direct comparison, LongCat-Video and PixVerse-V5 are nearly tied
in overall quality (242 vs. 246), with our model demonstrating a distinct advantage in visual quality. More importantly,
when benchmarked against the current state-of-the-art open-source model, Wan2.2-T2V-A14B, our model shows a clear
superiority. LongCat-Video was preferred by users in overall quality, driven by significant leads in both text-alignment
and motion quality.

Data Taxonomy for Image-to-Video Evaluation Our benchmark for Image-to-Video evaluation is built upon a
curated set of 100 first-frame reference images, designed to exhibit comprehensive diversity across multiple dimensions.
These dimensions include style (e.g., photorealism, ink wash, 2D/3D animation, oil painting, sketch), content (e.g.,
human subjects, animals, plants, food, vehicles, indoor/outdoor environments), and quality (high vs. standard). Each
image is further defined by metadata such as aspect ratios (1:1, 16:9, 9:16) and resolutions (720p, 1080p, 2K). To
rigorously evaluate model sensitivity and dependency, each reference image is paired with a set of four distinct prompt
types: (1) detailed prompts that specify fine-grained attributes; (2) concise prompts with minimal instructions; (3)
contradictory prompts designed to conflict with the visual reference; and (4) empty prompts to assess unconditional
generation based on the image. This quadripartite prompt structure enables a robust assessment of the model’s
cross-modal alignment and generative capabilities.

Image-to-Video Evaluation We then compare LongCat-Video against several leading video generation models in
image-to-video generation setting. Concretely, we compare with two advanced proprietary models Seedance 1.0 [Gao
et al., 2025] and Hailuo-2, as well as the current SOTA open-source model Wan 2.2-I2V-A14B [Wan et al., 2025].
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Figure 15: Text-to-Video GSB evaluation results on our internal benchmark.

The MOS evaluation results are illustrated in Figure 16. As shown in the figure, LongCat-Video achieves the highest
score in Visual Quality (3.27), indicating its strength in generating aesthetically pleasing frames. However, it scores
lower on Image-Alignment (4.04) and Motion Quality (3.59) compared to the other models. Hailuo-02 and Wan2.2-
I2V-A14B perform best in Image-Alignment (4.18), while Hailuo-02 leads in Motion Quality (3.80). In the Overall
Quality evaluation, LongCat-Video (3.17) is rated as competitive, though it trails the other models, with Seedance 1.0
achieving the highest overall score of 3.35. This suggests that while our model excels in visual fidelity, there is room
for improvement in maintaining temporal consistency and alignment with the source image.
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Figure 16: Image-to-Video MOS evaluation results on our internal benchmark.

5.2 Public Benchmarks

As a supplement to internal benchmarks, we also evaluated LongCat-Video on the widely used public benchmark
VBench [Huang et al., 2024, Zheng et al., 2025]. Specifically, we conducted assessments on the latest version of
VBench 2.0. The evaluation results are shown Table 8. On VBench 2.0, Long-Cat Video also demonstrated strong
performance, with a total score second only to Veo3 [Google, 2024] and Vidu Q1 [Shengshu, 2024]. It is noteworthy
that LongCat-Video led all other methods in the Commonsense dimension, indicating that our approach excels in aspects
such as motion rationality and physical laws. This aligns with Long-Cat Video’s outstanding long video generation
capabilities and represents a key advantage in moving towards world model development.

Table 8: Text-to-Video evaluation results on VBench 2.0 benchmark.
Model name Accessibility Evaluation Date Creativity↑ Commonsense↑ Controllability↑ Human Fidelity↑ Physics↑ Total Score↑

HunyuanVideo [Kong et al., 2024] Open Source 2025-03 41.84% 63.44% 28.60% 82.41% 60.20% 55.30%

Wan2.1 [Wan et al., 2025] Open Source 2025-03 55.25% 63.98% 37.32% 81.60% 62.84% 60.20%

Sora-480p [OpenAI, 2024] Proprietary 2025-03 60.57% 64.32% 22.09% 87.72% 57.18% 58.38%

Kling1.6 [Kuaishou, 2024] Proprietary 2025-03 48.58% 65.45% 33.05% 83.56% 64.35% 59.00%

Vidu Q1 [Shengshu, 2024] Proprietary 2025-04 56.54% 65.98% 38.13% 81.24% 71.63% 62.70%

Seedance 1.0 Pro [Gao et al., 2025] Proprietary 2025-06 53.04% 64.31% 39.84% 77.06% 64.81% 59.81%

Veo3 [Google, 2024] Proprietary 2025-09 60.85% 69.48% 47.04% 86.88% 69.35% 66.72%

LongCat-Video Open Source 2025-10 54.73% 70.94% 44.79% 80.20% 59.92% 62.11%
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5.3 Text-to-Video Examples

Figure 17: Results on Text-to-Video generation.
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5.4 Image-to-Video Examples

Figure 18: Results on Image-to-Video. As shown in the top row, given the same initial image, LongCat-Video accurately
responds to instructions for various actions.

23



LongCat-Video Technical Report

5.5 Long-Video Generation Examples

01:00 02:00 03:00 04:00

long
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00:03 00:08 00:13 00:18
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01:00 02:00 03:00 04:00

long

01:00 02:00 03:00 04:00
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00:03 00:08 00:13 00:18

interactive 0-6s 6-11s 11-16s 17-22s

Figure 19: Results on Video-Continuation. LongCat-Video supports minutes-long video generation without quality
degradation, as well as interactive video generation with changing instructions for each clip.
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6 Conclusion and Future Work

We introduce LongCat-Video, a 13B-parameter foundational video generation model that unifies Text-to-Video, Image-
to-Video, and Video-Continuation tasks within a single framework. LongCat-Video demonstrates strong performance
across all supported tasks, particularly excelling in long video generation, which is enabled by pretraining on the
Video-Continuation task. As a robust general-purpose video generation model, LongCat-Video is applicable to a
wide range of video content creation scenarios. Moreover, it marks our first step toward developing world models.
Efficient long video generation addresses the rendering problem of world models, enabling models to express their
world knowledge through generated video content. Future directions include better modeling of physical knowledge,
multi-modal memory integration in video generation, and the incorporation of knowledge from LLM and MLLM.
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A Appendix

A.1 Appendix-A

A.1.1 GRPO Preliminaries

The GRPO method optimizes the generative flow model by maximizing the following objective function:

JGRPO(θ) = Ec∼C,{xi}G
i=1∼πθold (·|c)

[
1

G

G∑
i=1

1

T

T−1∑
t=0

(Lpolicy (θ)− βDKL (πθ∥πref ))

]
, (22)

Below we elaborate on each component of this objective.

Sampling Process. A group of G samples
{
xi
}G
i=1

is drawn from the current policy πθold conditioned on the prompt
c. Each sample is generated by discretizing the reverse-time stochastic differential equation (SDE):

xt+∆t = xt +

[
vθ (xt, t, c) +

σ2
t

2t
(xt + (1− t)vθ (xt, t, c))

]
∆t+ σt

√
∆tϵ, (23)

with ϵ ∼ N (0, I) and noise schedule σt = a
√
t/(1− t). This process yields complete trajectories{(

xi
T , x

i
T−1, · · · , xi

0

)}G
i=1

for policy optimization.

Policy Loss. The policy loss Lpolicy (θ) = rit(θ)Â
i
t consists of two elements:

1) Importance ratio: rit(θ) =
pθ(xi

t−1|x
i
t,c)

pθold (x
i
t−1|xi

t,c)
quantifies the probability change for transition xi

t → xi
t−1 between policy

updates, where the transition probability follows:

pθ (xt−1 | xt, c) = N
(
xt−1;µθ (xt, t, c) , σ

2
t∆tI

)
. (24)

2) Group-relative advantage: Âi
t =

R(xi
0,c)−mean

(
{R(xj

0,c)}Gj=1

)
std

(
{R(xj

0,c)}Gj=1

) provides normalized advantage estimates by compar-

ing individual rewards against group statistics.

KL Regularization. The KL divergence term DKL (πθ∥πref) ensures training stability by constraining policy devia-
tion from the reference policy. For the flow matching formulation, this term can be expressed as:

DKL (πθ∥πref) =
∆t

2

(
σt(1− t)

2t
+

1

σt

)2

∥vθ (xt, t, c)− vref (xt, t, c)∥2 , (25)

with β controlling the regularization strength.

A.1.2 The Gradient of the Policy and KL Loss

We derive the gradient of the policy lossLpolicy(θ) = rit(θ)Â
i
t with respect to the parameters θ, The gradient computation

proceeds as follows:
∇θLpolicy(θ) = Âi

t∇θr
i
t(θ).

∇θr
i
t(θ) =

pθ
(
xi
t−1 | xi

t, c
)

pθold

(
xi
t−1 | xi

t, c
)∇θ log pθ

(
xi
t−1 | xi

t, c
)
= ∇θ log pθ

(
xi
t−1 | xi

t, c
)
.

Combining these results gives the policy gradient:

∇θLpolicy(θ) = Âi
tr

i
t(θ)∇θ log pθ

(
xi
t−1 | xi

t, c
)
. (26)
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We now compute the score function∇θ log pθ (xt−1 | xt, c). The conditional distribution is Gaussian:

pθ (xt−1 | xt, c) = N
(
xt−1;µθ (xt, t, c) , σ

2
t∆tI

)
.

∇θ log pθ =
1

σ2
t∆t

(xt−1 − µθ) · ∇θµθ.

From the SDE sampling process, we have the reparameterization:

xt−1 = µθ + σt

√
∆tϵ, ϵ ∼ N (0, I),

Substituting:

∇θ log pθ =
1

σ2
t∆t

(
σt

√
∆tϵ

)
· ∇θµθ =

1

σt

√
∆t

ϵ · ∇θµθ.

µθ = xt +

[
vθ (xt, t, c) +

σ2
t

2t
(xt + (1− t)vθ (xt, t, c))

]
(−∆t) (27)

Simplifying the drift term:

drift = vθ +
σ2
t

2t
xt +

σ2
t

2t
(1− t)vθ

= vθ

(
1 +

σ2
t (1− t)

2t

)
+

σ2
t

2t
xt

(28)

Thus:

µθ = xt −∆t · drift (29)

Taking the gradient with respect to θ (noting that xt is constant):

∇θµθ = −∆t · ∇θdrift = −∆t ·
(
1 +

σ2
t (1− t)

2t

)
∇θvθ (30)

Substituting into∇θ log pθ:

∇θ log pθ =
1

σt

√
∆t

ϵ ·
[
−∆t ·

(
1 +

σ2
t (1− t)

2t

)
∇θvθ

]
= −
√
∆t

σt

(
1 +

σ2
t (1− t)

2t

)
ϵ · ∇θvθ

(31)

Therefore, the gradient of the policy loss is:

∇θLpolicy(θ) = Âi
tr

i
t(θ) ·

[
−
√
∆t

σt

(
1 +

σ2
t (1− t)

2t

)
ϵ · ∇θvθ

]
(32)

Now, we substitute a = 1 and σt =
√

t
1−t (so σ2

t = t
1−t ). Computing the coefficient term:

1 +
σ2
t (1− t)

2t
= 1 +

t
1−t · (1− t)

2t
= 1 +

1

2
=

3

2
(33)

And the scaling term:
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√
∆t

σt
=

√
∆t√
t

1−t

=
√
∆t ·

√
1− t

t
=

√
∆t(1− t)

t
(34)

Substituting these simplifications, we obtain the final policy gradient expression:

∇θLpolicy(θ) = −
3

2
Âi

t

√
∆t(1− t)

t
ϵ · ∇θvθ (35)

By introducing a reweighting coefficient defined as:

λpolicy(t,∆t) = κ(t,∆t)−1 =

√
t

∆t(1− t)
(36)

The reweighted policy loss becomes:

Lpolicy, reweighted(θ) = λpolicy(t,∆t) · Lpolicy(θ) (37)

This yields the modified gradient:

∇θLpolicy, reweighted(θ) = −
3

2
Âi

t · ϵ · ∇θvθ (38)

Similarly, the gradient of the KL divergence term can be derived as:

∇θDKL(θ) = ∆t · 9
4
· 1− t

t
· (vθ − vref) · ∇θvθ (39)

This expression reveals that the KL loss gradient suffers from the same scaling issues as the policy loss gradient. To
address this, we also introduce a KL reweighting coefficient:

λKL(t,∆t) = kKL(t,∆t)−1 =
t

∆t(1− t)
(40)

The reweighted KL loss becomes:

LKL, reweighted(θ) = λKL(t,∆t) ·DKL(θ) (41)

yielding the simplified gradient:

∇θLKL,reweighted(θ) =
9

4
· (vθ − vref) · ∇θvθ (42)

Based on the reweighting coefficients for the policy loss and KL loss, the revised GRPO objective function is as follows:

JGRPO(θ) = Ec∼C, t′∼U(0,T ′−1),

{xi}G
i=1∼πθold (·|c,t

′)

[
1

G

G∑
i=1

(
λpolicy(

t′

T
,∆

t′

T
) · Lpolicy(θ)− βλKL(

t′

T
,∆

t′

T
) ·DKL (πθ∥πref)

)]
(43)

A.1.3 Fix the stochastic timestep in SDE sampling

As described in Para. "Fix the stochastic timestep in SDE sampling" in Sec. 3.3.1, the objective function is accordingly
simplified to focus only on the critical stochastic timestep:
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JGRPO-Selective(θ) = Ec∼C, t′∼U(0,T ′−1), {xi}G
i=1∼πold(·|c,t′)

[
1

G

G∑
i=1

(
rit′(θ)Â

i − βDKL (πθ∥πref)t′
)]

, (44)

where t′ ∼ U(0, T ′ − 1) indicates uniform sampling of the critical timestep from the first T ′ steps. We set T ′ = 6 in
our experiments. (The total sampling steps for training is set to 16.)

A.1.4 Multi-reward GRPO Training

Eq.(38) reveals that in flow matching models, GRPO fundamentally uses the relative advantage Âi
t and the noise term ϵ

to estimate the gradient of the reward with respect to the velocity field, following the chain rule decomposition:

dR

dθ
=

dR

dvθ
· dvθ
dθ

(45)

where the GRPO framework provides the specific form:

dR

dvθ
≈ −3

2
Âi

t · ϵ (46)

When optimizing for multiple reward functions R1, R2, . . . , Rn with corresponding weights w1, w2, . . . , wn, the total
gradient is given by the weighted sum:

∇θJtotal =

n∑
k=1

wk ·
dRk

dθ
(47)

Applying the chain rule decomposition for each reward:

∇θJtotal =

n∑
k=1

wk ·
(
dRk

dvθ
· dvθ
dθ

)
=

(
n∑

k=1

wk ·
dRk

dvθ

)
· dvθ
dθ

(48)

Substituting the GRPO expression for each reward gradient:

∇θJtotal =

(
n∑

k=1

wk ·
(
−3

2
Âi

k,t · ϵ
))
· dvθ
dθ

= −3

2

(
n∑

k=1

wk · Âi
k,t

)
· ϵ · ∇θvθ (49)

This demonstrates that the effective relative advantage in the policy loss for multi-reward optimization is exactly the
weighted sum of the individual relative advantages. Therefore, the corresponding policy loss becomes:

Lpolicy, multi(θ) = rit(θ) ·

(
n∑

k=1

wk · Âi
k,t

)
(50)

where each relative advantage Âi
k,t is computed independently for reward Rk using group normalization:

Âi
k,t =

Rk

(
xi
0, c
)
−mean

({
Rk

(
xj
0, c
)}G

j=1

)
σmax,k

(51)
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Table 9: GRPO Experiment Settings

Parameter Value Parameter Value

Group size 4 # Sampling steps 16

Prompts per update 64 Timeshift 12

SDE steps range [0, 6] CFG 4

Online training True Learning rate 1e-4

Policy loss weight 1 LoRA dim 128

KL loss weight 3e-4 LoRA alpha 64

HPSv3-general reward weight 1 LoRA layers Linear layers in all Self-Attention,

HPSv3-percentile reward weight 1 Cross-Attention, FFN layers

MQ reward weight 1

TA reward weight 1

A.1.5 GRPO Experiment Settings

A.2 Appendix-B

A.2.1 Modeling of Block Sparse Attention

3D Block Rearrangement We consider a video sequence with shape T ×H ×W , stored in memory in the order
T,H,W . This sequence is divided into NT × NH × NW 3D blocks, where NT = ⌈T/t⌉, NH = ⌈H/h⌉, and
NW = ⌈W/w⌉, and each block has shape t× h× w. The blocks are arranged in memory in the order [NT , NH , NW ]
(block-wise order), and within each block, the elements are stored in the order [t, h, w] (intra-block order). After this
rearrangement, we obtain a reshaped sequence.

Block Selection Mask Construction Let X be the input tensor after rearrangement. We compute the query Q and
key K matrices using learnable weights Wq and Wk:

Q = XWq ∈ Rb×nh×sq×d, K = XWk ∈ Rb×nh×sk×d,

where b is the batch size, nh is the number of attention heads, sq and sk are the sequence lengths for queries and keys
respectively (with sq = sk = T ×H ×W in this case), and d is the feature dimension.

To reduce computational cost, we perform average pooling over each block. Let n = t × h × w be the number of
elements per block. The pooled query Qpool and key Kpool are computed by averaging over the elements within each
block:

Qpool[:, :, bq, :] =
1

n

n−1∑
j=0

Q[:, :, (bq − 1)n+ j, :] for bq = 1, . . . , Nq,

Kpool[:, :, bk, :] =
1

n

n−1∑
j=0

K[:, :, (bk − 1)n+ j, :] for bk = 1, . . . , Nk,

where Nq = sq/n and Nk = sk/n are the number of query and key blocks respectively.

The pooled score matrix Spool is then calculated as:

Spool =
QpoolK

⊤
pool√

d
∈ Rb×nh×Nq×Nk ,

where K⊤
pool denotes the transpose of the last two dimensions of Kpool.

For each query block i ∈ [0, Nq − 1], we select the top r key blocks based on the highest scores in Spool[:, :, i, :]. This
allows us to construct a binary mask matrix M ∈ Rb×nh×sq×sk as follows:

M [:, :, in : (i+ 1)n, jn : (j + 1)n] =

{
1 if key block j is in the top-r neighbors of query block i

0 otherwise
,
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Attention with Block Selection Mask Finally, we compute the masked attention. The attention score matrix S is:

S =
QK⊤
√
d
∈ Rb×nh×sq×sk ,

where K⊤ is the transpose of the last two dimensions of K. We then apply the mask:

Smasked =

{
S where M = 1

−∞ where M = 0
,

and the attention weights are obtained by applying softmax along the last dimension:

O = softmax(Smasked).

A.2.2 Modeling of Ring Block Sparse Attention for Context Parallelism

We extend the sparse attention computation with context parallelism. Given a tensor parallelism size of Ncp, each

parallel rank maintains a local segment of T×H×W
Ncp

latents. Let Qi,Ki, Vi ∈ Rb×nh×T×H×W
Ncp

×d denote the query, key,
and value tensors respectively for the i-th rank.

Local Block Selection Mask Construction To compute the block-sparse attention mask Mi ∈ Rb×nh×
Nq
Ncp

×Nk for
rank i, each rank first computes its own local pooled keys:

Kpoolj [:, :, bj , :] =
1

n

n−1∑
m=0

Kj [:, :, (bj − 1)n+m, :] for bj = 1, . . . ,
sk
Ncp

,

where Kj = K[:, :, (j − 1) sk
Ncp

: j sk
Ncp

, :], j ∈ [1, Ncp]. Then we gather the pooled key representations and compute
the pooled score matrix for rank i:

Spooli =
Qpooli

(⊕Ncp

j=1 Kpoolj

)⊤
√
d

where
⊕

denotes concatenation along the sequence dimension and Qi = Q[:, :, (i − 1)
sq
Ncp

: i
sq
Ncp

, :], i ∈ [1, Ncp].
Based on Spooli , the mask Mi is constructed by selecting the top-r key blocks for each query block across all batches
and heads.

To optimize efficiency, we employ a ring-attention communication pattern where the computation of local pooled scores
overlaps with the communication of Kpooli tensors between adjacent ranks.

Ring Attention with Local Block Selection Mask Once Mi is obtained, each rank computes its attention output Oi

by the online softmax algorithm with Mij ∈ Rb×nh×
Nq
Ncp

× Nk
Ncp , which is the block of mask Mi corresponding to rank j.

Ring-attention [Liu et al., 2023] is adopted to overlap the attention computation and the communication of Kj , Vj .

A.2.3 Implementation Details

Our hardware-aligned 3D Block Sparse Attention operator is implemented using Triton[Tillet et al., 2019], building
upon the implementation of Flash Attention[Dao, 2023]. We implemented both forward and backward passes for both
single-GPU and context-parallel configurations.

3D block size The 3D block size is set to t = h = w = 4. This configuration represents a trade-off between speed and
flexibility. In our implementation, the fastest performance is achieved when tq · hq · wq = 128 and tk · hk · wk = 1024
(i.e., the default configuration of t · h · w = 64 is not the fastest due to the hardware alignment), but this comes at the
cost of reduced flexibility in handling varying resolutions, especially Ncp is large. In our experiments, we observed no
significant differences in post-training results across various tested configurations of 3D block sizes, with tq · hq · wq

values in [64, 128] and tk · hk · wk values in [64, 128, 256, 512, 1024].

Sparsity The hyperparameter r controls the number of key blocks selected per query block. The computational
complexity scales linearly with r. We set r to 1

8Nk during the distillation training phase and to 1
16Nk during the

refinement-expert training phase.

33



LongCat-Video Technical Report

Construction of the Block Selection Mask Regarding the construction of the block selection mask, two primary
strategies are explored:
1) Top-r mode: As described earlier, this approach selects the top r key blocks based on their pooled attention scores.
2) CDF-p mode: This method selects key blocks in descending order of their pooled scores until the cumulative softmax
of the scores reaches a threshold p.

In our experiments, the CDF-p mode yields better generation quality under high speedup ratios in a training-free setting.
However, in trainable scenarios, it suffers from the time cost caused by different number of key blocks selected by the
query blocks. Therefore, we adopted the top-r approach for our trainable implementation.

A.3 Appendix-C
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Figure 20: MQ Reward model validation loss curve

34


	Introduction
	Data
	Data Curation Pipeline
	Data Preprocessing Stage
	Data Annotation Stage

	Data Distribution

	Method
	Model Architecture
	Unified Model for Multiple Tasks
	Multi-Reward GRPO Training
	GRPO for Flow Matching Modeling
	Reward Models and Multi-Reward Training

	Efficient Video Generation
	Coarse-to-Fine Generation
	Block Sparse Attention


	Training
	Base Model Training
	RLHF Training
	Acceleration Training
	Training Infrastructure

	Evaluation
	Internal Benchmarks
	Public Benchmarks
	Text-to-Video Examples
	Image-to-Video Examples
	Long-Video Generation Examples

	Conclusion and Future Work
	Contributors and Acknowledgments
	Appendix
	Appendix-A
	GRPO Preliminaries
	The Gradient of the Policy and KL Loss
	Fix the stochastic timestep in SDE sampling
	Multi-reward GRPO Training
	GRPO Experiment Settings

	Appendix-B
	Modeling of Block Sparse Attention
	Modeling of Ring Block Sparse Attention for Context Parallelism
	Implementation Details

	Appendix-C


