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Abstract

We present DeepSeek-OCR as an initial investigation into the feasibility of compressing long
contexts via optical 2D mapping. DeepSeek-OCR consists of two components: DeepEncoder
and DeepSeek3B-MoE-A570M as the decoder. Specifically, DeepEncoder serves as the core
engine, designed to maintain low activations under high-resolution input while achieving high
compression ratios to ensure an optimal and manageable number of vision tokens. Experiments
show that when the number of text tokens is within 10 times that of vision tokens (i.e., a
compression ratio < 10×), the model can achieve decoding (OCR) precision of 97%. Even at a
compression ratio of 20×, the OCR accuracy still remains at about 60%. This shows considerable
promise for research areas such as historical long-context compression and memory forgetting
mechanisms in LLMs. Beyond this, DeepSeek-OCR also demonstrates high practical value.
On OmniDocBench, it surpasses GOT-OCR2.0 (256 tokens/page) using only 100 vision tokens,
and outperforms MinerU2.0 (6000+ tokens per page on average) while utilizing fewer than
800 vision tokens. In production, DeepSeek-OCR can generate training data for LLMs/VLMs
at a scale of 200k+ pages per day (a single A100-40G). Codes and model weights are publicly
accessible at http://github.com/deepseek-ai/DeepSeek-OCR.
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(a) Compression on Fox benchmark
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Figure 1 | Figure (a) shows the compression ratio (number of text tokens in ground truth/number
of vision tokens model used) testing on Fox [21] benchmark; Figure (b) shows performance
comparisons on OmniDocBench [27]. DeepSeek-OCR can achieve state-of-the-art performance
among end-to-end models enjoying the fewest vision tokens.

http://github.com/deepseek-ai/DeepSeek-OCR
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1. Introduction

Current Large Language Models (LLMs) face significant computational challenges when process-
ing long textual content due to quadratic scaling with sequence length. We explore a potential
solution: leveraging visual modality as an efficient compression medium for textual information.
A single image containing document text can represent rich information using substantially
fewer tokens than the equivalent digital text, suggesting that optical compression through vision
tokens could achieve much higher compression ratios.

This insight motivates us to reexamine vision-language models (VLMs) from an LLM-centric
perspective, focusing on how vision encoders can enhance LLMs’ efficiency in processing textual
information rather than basic VQA [12, 16, 24, 32, 41] what humans excel at. OCR tasks, as an
intermediate modality bridging vision and language, provide an ideal testbed for this vision-
text compression paradigm, as they establish a natural compression-decompression mapping
between visual and textual representations while offering quantitative evaluation metrics.

Accordingly, we present DeepSeek-OCR, a VLM designed as a preliminary proof-of-concept
for efficient vision-text compression. Our work makes three primary contributions:

First, we provide comprehensive quantitative analysis of vision-text token compression
ratios. Our method achieves 96%+ OCR decoding precision at 9-10× text compression, ∼90% at
10-12× compression, and ∼60% at 20× compression on Fox [21] benchmarks featuring diverse
document layouts (with actual accuracy being even higher when accounting for formatting
differences between output and ground truth), as shown in Figure 1(a). The results demonstrate
that compact language models can effectively learn to decode compressed visual representations,
suggesting that larger LLMs could readily acquire similar capabilities through appropriate
pretraining design.

Second, we introduce DeepEncoder, a novel architecture that maintains low activation mem-
ory and minimal vision tokens even with high-resolution inputs. It serially connects window
attention and global attention encoder components through a 16× convolutional compressor.
This design ensures that the window attention component processes a large number of vision
tokens, while the compressor reduces vision tokens before they enter the dense global attention
component, achieving effective memory and token compression.

Third, we develop DeepSeek-OCR based on DeepEncoder and DeepSeek3B-MoE [19, 20].
As shown in Figure 1(b), it achieves state-of-the-art performance within end-to-end models on
OmniDocBench while using the fewest vision tokens. Additionally, we equip the model with
capabilities for parsing charts, chemical formulas, simple geometric figures, and natural images
to enhance its practical utility further. In production, DeepSeek-OCR can generate 33 million
pages of data per day for LLMs or VLMs using 20 nodes (each with 8 A100-40G GPUs).

In summary, this work presents a preliminary exploration of using visual modality as an
efficient compression medium for textual information processing in LLMs. Through DeepSeek-
OCR, we demonstrate that vision-text compression can achieve significant token reduction
(7-20×) for different historical context stages, offering a promising direction for addressing
long-context challenges in large language models. Our quantitative analysis provides empirical
guidelines for VLM token allocation optimization, while the proposed DeepEncoder architecture
showcases practical feasibility with real-world deployment capabilities. Although focused on
OCR as a proof-of-concept, this paradigm opens new possibilities for rethinking how vision and
language modalities can be synergistically combined to enhance computational efficiency in
large-scale text processing and agent systems.
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Figure 2 | Typical vision encoders in popular VLMs. Here are three types of encoders commonly
used in current open-source VLMs, all of which suffer from their respective deficiencies.

2. Related Works

2.1. Typical Vision Encoders in VLMs

Current open-source VLMs employ three main types of vision encoders, as illustrated in Figure 2.
The first type is a dual-tower architecture represented by Vary [36], which utilizes parallel
SAM [17] encoder to increase visual vocabulary parameters for high-resolution image processing.
While offering controllable parameters and activation memory, this approach suffers from
significant drawbacks: it requires dual image preprocessing that complicates deployment and
makes encoder pipeline parallelism challenging during training. The second type is tile-based
method exemplified by InternVL2.0 [8], which processes images by dividing them into small tiles
for parallel computation, reducing activation memory under high-resolution settings. Although
capable of handling extremely high resolutions, this approach has notable limitations due to its
typically low native encoder resolution (below 512×512), causing large images to be excessively
fragmented and resulting in numerous vision tokens. The third type is adaptive resolution
encoding represented by Qwen2-VL [35], which adopts the NaViT [10] paradigm to directly
process full images through patch-based segmentation without tile parallelization. While this
encoder can handle diverse resolutions flexibly, it faces substantial challenges with large images
due to massive activation memory consumption that can cause GPU memory overflow, and
sequence packing requires extremely long sequence lengths during training. Long vision tokens
will slow down both prefill and generation phases of inference.

2.2. End-to-end OCR Models

OCR, particularly document parsing task, has been a highly active topic in the image-to-text
domain. With the advancement of VLMs, a large number of end-to-end OCR models have
emerged, fundamentally transforming the traditional pipeline architecture (which required
separate detection and recognition expert models) by simplifying OCR systems. Nougat [6]
first employs end-to-end framework for academic paper OCR on arXiv, demonstrating the
potential of models in handling dense perception tasks. GOT-OCR2.0 [38] expands the scope
of OCR2.0 to include more synthetic image parsing tasks and designs an OCR model with
performance-efficiency trade-offs, further highlighting the potential of end-to-end OCR re-
searches. Additionally, general vision models such as Qwen-VL series [35], InternVL series [8],
and many their derivatives continuously enhance their document OCR capabilities to explore
dense visual perception boundaries. However, a crucial research question that current models
have not addressed is: for a document containing 1000 words, how many vision tokens are at least
needed for decoding? This question holds significant importance for research in the principle that
"a picture is worth a thousand words."
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Figure 3 | The architecture of DeepSeek-OCR. DeepSeek-OCR consists of a DeepEncoder and
a DeepSeek-3B-MoE decoder. DeepEncoder is the core of DeepSeek-OCR, comprising three
components: a SAM [17] for perception dominated by window attention, a CLIP [29] for
knowledge with dense global attention, and a 16× token compressor that bridges between them.

3. Methodology

3.1. Architecture

As shown in Figure 3, DeepSeek-OCR enjoys a unified end-to-end VLM architecture consisting
of an encoder and a decoder. The encoder (namely DeepEncoder) is responsible for extracting
image features and tokenizing as well as compressing visual representations. The decoder is
used for generating the required result based on image tokens and prompts. DeepEncoder is
approximately 380M in parameters, mainly composed of an 80M SAM-base [17] and a 300M
CLIP-large [29] connected in series. The decoder adopts a 3B MoE [19, 20] architecture with 570M
activated parameters. In the following paragraphs, we will delve into the model components,
data engineering, and training skills.

3.2. DeepEncoder

To explore the feasibility of contexts optical compression, we need a vision encoder with the
following features: 1.Capable of processing high resolutions; 2.Low activation at high resolutions;
3.Few vision tokens; 4.Support for multiple resolution inputs; 5. Moderate parameter count.
However, as described in the Section 2.1, current open-source encoders cannot fully satisfy all
these conditions. Therefore, we design a novel vision encoder ourselves, named DeepEncoder.

3.2.1. Architecture of DeepEncoder

DeepEncoder mainly consists of two components: a visual perception feature extraction compo-
nent dominated by window attention, and a visual knowledge feature extraction component
with dense global attention. To benefit from the pretraining gains of previous works, we use
SAM-base (patch-size 16) and CLIP-large as the main architectures for the two components
respectively. For CLIP, we remove the first patch embedding layer since its input is no longer
images but output tokens from the previous pipeline. Between the two components, we borrow
from Vary [36] and use a 2-layer convolutional module to perform 16× downsampling of vision
tokens. Each convolutional layer has a kernel size of 3, stride of 2, padding of 1, and channels
increase from 256 to 1024. Assuming we input a 1024×1024 image, the DeepEncoder will seg-
ment it into 1024/16×1024/16=4096 patch tokens. Since the first half of encoder is dominated by
window attention and only 80M, the activation is acceptable. Before entering global attention,
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Figure 4 | To test model performance under different compression ratios (requiring different
numbers of vision tokens) and enhance the practicality of DeepSeek-OCR, we configure it with
multiple resolution modes.

the 4096 tokens go through the compression module and the token count becomes 4096/16=256,
thus making the overall activation memory controllable.

Table 1 | Multi resolution support of DeepEncoder. For both research and application purposes,
we design DeepEncoder with diverse native resolution and dynamic resolution modes.

Mode
Native Resolution Dynamic Resolution

Tiny Small Base Large Gundam Gundam-M

Resolution 512 640 1024 1280 640+1024 1024+1280
Tokens 64 100 256 400 n×100+256 n×256+400
Process resize resize padding padding resize + padding resize + padding

3.2.2. Multiple resolution support

Suppose we have an image with 1000 optical characters and we want to test how many vision
tokens are needed for decoding. This requires the model to support a variable number of vision
tokens. That is to say the DeepEncoder needs to support multiple resolutions.

We meet the requirement aforementioned through dynamic interpolation of positional
encodings, and design several resolution modes for simultaneous model training to achieve
the capability of a single DeepSeek-OCR model supporting multiple resolutions. As shown in
Figure 4, DeepEncoder mainly supports two major input modes: native resolution and dynamic
resolution. Each of them contains multiple sub-modes.

Native resolution supports four sub-modes: Tiny, Small, Base, and Large, with corresponding
resolutions and token counts of 512×512 (64), 640×640 (100), 1024×1024 (256), and 1280×1280
(400) respectively. Since Tiny and Small modes have relatively small resolutions, to avoid
wasting vision tokens, images are processed by directly resizing the original shape. For Base
and Large modes, in order to preserve the original image aspect ratio, images are padded to
the corresponding size. After padding, the number of valid vision tokens is less than the actual
number of vision tokens, with the calculation formula being:

𝑁𝑣𝑎𝑙𝑖𝑑 = ⌈𝑁𝑎𝑐𝑡𝑢𝑎𝑙 × [1 − ((𝑚𝑎𝑥 (𝑤, ℎ) −𝑚𝑖𝑛(𝑤, ℎ))/(𝑚𝑎𝑥 (𝑤, ℎ)))]⌉ (1)

where 𝑤 and ℎ represent the width and height of the original input image.
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Dynamic resolution can be composed of two native resolutions. For example, Gundam
mode consists of n×640×640 tiles (local views) and a 1024×1024 global view. The tiling method
following InternVL2.0 [8]. Supporting dynamic resolution is mainly for application considera-
tions, especially for ultra-high-resolution inputs (such as newspaper images). Tiling is a form of
secondary window attention that can effectively reduce activation memory further. It’s worth
noting that due to our relatively large native resolutions, images won’t be fragmented too much
under dynamic resolution (the number of tiles is controlled within the range of 2 to 9). The
vision token number output by the DeepEncoder under Gundam mode is: 𝑛 × 100 + 256, where
𝑛 is the number of tiles. For images with both width and height smaller than 640, 𝑛 is set to 0,
i.e., Gundam mode will degrade to Base mode.

Gundam mode is trained together with the four native resolution modes to achieve the goal
of one model supporting multiple resolutions. Note that Gundam-master mode (1024×1024 local
views+1280×1280 global view) is obtained through continued training on a trained DeepSeek-
OCR model. This is mainly for load balancing, as Gundam-master’s resolution is too large and
training it together would slow down the overall training speed.

3.3. The MoE Decoder

Our decoder uses the DeepSeekMoE [19, 20], specifically DeepSeek-3B-MoE. During inference,
the model activates 6 out of 64 routed experts and 2 shared experts, with about 570M activated
parameters. The 3B DeepSeekMoE is very suitable for domain-centric (OCR for us) VLM
research, as it obtains the expressive capability of a 3B model while enjoying the inference
efficiency of a 500M small model.

The decoder reconstructs the original text representation from the compressed latent vision
tokens of DeepEncoder as:

𝑓dec : R𝑛×𝑑latent → R𝑁×𝑑text ; X̂ = 𝑓dec(Z) where 𝑛 ≤ 𝑁 (2)

where Z ∈ R𝑛×𝑑latent are the compressed latent(vision) tokens from DeepEncoder and X̂ ∈ R𝑁×𝑑text

is the reconstructed text representation. The function 𝑓dec represents a non-linear mapping
that can be effectively learned by compact language models through OCR-style training. It
is reasonable to conjecture that LLMs, through specialized pretraining optimization, would
demonstrate more natural integration of such capabilities.

3.4. Data Engine

We constructe complex and diverse training data for DeepSeek-OCR, including OCR 1.0 data,
which mainly consists of traditional OCR tasks such as scene image OCR and document OCR;
OCR 2.0 data, which mainly includes parsing tasks for complex artificial images, such as
common charts, chemical formulas, and plane geometry parsing data; General vision data,
which is mainly used to inject certain general image understanding capabilities into DeepSeek-
OCR and preserve the general vision interface.

3.4.1. OCR 1.0 data

Document data is the top priority for DeepSeek-OCR. We collect 30M pages of diverse PDF
data covering about 100 languages from the Internet, with Chinese and English accounting for
approximately 25M and other languages accounting for 5M. For this data, we create two types
of ground truth: coarse annotations and fine annotations. Coarse annotations are extracted
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(a) Ground truth image (b) Fine annotations with layouts

Figure 5 | OCR 1.0 fine annotations display. We format the ground truth into an interleaved
layout and text format, where each paragraph of text is preceded by the coordinates and label of
it in the original image. All coordinates are normalized into 1000 bins.

directly from the full dataset using fitz, aimed at teaching the model to recognize optical text,
especially in minority languages. Fine annotations include 2M pages each for Chinese and
English, labeled using advanced layout models (such as PP-DocLayout [33]) and OCR models
(such as MinuerU [34] and GOT-OCR2.0 [38]) to construct detection and recognition interleaved
data. For minority languages, in the detection part, we find that the layout model enjoys certain
generalization capabilities. In the recognition part, we use fitz to create small patch data to
train a GOT-OCR2.0, then use the trained model to label small patches after layout processing,
employing a model flywheel to create 600K data samples. During the training of DeepSeek-
OCR, coarse labels and fine labels are distinguished using different prompts. The ground truth
for fine annotation image-text pairs can be seen in Figure 5. We also collect 3M Word data,
constructing high-quality image-text pairs without layout by directly extracting content. This
data mainly brings benefits to formulas and HTML-formatted tables. Additionally, we select
some open-source data [28, 37] as supplements.

For natural scene OCR, our model mainly supports Chinese and English. The image data
sources come from LAION [31] and Wukong [13], labeled using PaddleOCR [9], with 10M data
samples each for Chinese and English. Like document OCR, natural scene OCR can also control
whether to output detection boxes through prompts.

3.4.2. OCR 2.0 data

Following GOT-OCR2.0 [38], we refer to chart, chemical formula, and plane geometry parsing
data as OCR 2.0 data. For chart data, following OneChart [7], we use pyecharts and matplotlib

8



(a) Image-text ground truth of chart (b) Image-text ground truth of geometry

Figure 6 | For charts, we do not use OneChart’s [7] dictionary format, but instead use HTML
table format as labels, which can save a certain amount of tokens. For plane geometry, we
convert the ground truth to dictionary format, where the dictionary contains keys such as
line segments, endpoint coordinates, line segment types, etc., for better readability. Each line
segment is encoded using the Slow Perception [39] manner.

to render 10M images, mainly including commonly used line, bar, pie, and composite charts.
We define chart parsing as image-to-HTML-table conversion task, as shown in Figure 6(a). For
chemical formulas, we utilize SMILES format from PubChem as the data source and render
them into images using RDKit, constructing 5M image-text pairs. For plane geometry images,
we follow Slow Perception [39] for generation. Specifically, we use perception-ruler size as 4 to
model each line segment. To increase the diversity of rendered data, we introduce geometric
translation-invariant data augmentation, where the same geometric image is translated in the
original image, corresponding to the same ground truth drawn at the centered position in the
coordinate system. Based on this, we construct a total of 1M plane geometry parsing data, as
illustrated in Figure 6(b).

3.4.3. General vision data

DeepEncoder can benefit from CLIP’s pretraining gains and has sufficient parameters to in-
corporate general visual knowledge. Therefore, we also prepare some corresponding data for
DeepSeek-OCR. Following DeepSeek-VL2 [40], we generate relevant data for tasks such as
caption, detection, and grounding. Note that DeepSeek-OCR is not a general VLM model, and
this portion of data accounts for only 20% of the total data. We introduce such type of data
mainly to preserve the general vision interface, so that researchers interested in our model and
general vision task can conveniently advance their work in the future.

3.4.4. Text-only data

To ensure the model’s language capabilities, we introduced 10% of in-house text-only pretrain
data, with all data processed to a length of 8192 tokens, which is also the sequence length
for DeepSeek-OCR. In summary, when training DeepSeek-OCR, OCR data accounts for 70%,
general vision data accounts for 20%, and text-only data accounts for 10%.

3.5. Training Pipelines

Our training pipeline is very simple and consists mainly of two stages: a).Training DeepEncoder
independently; b).Training the DeepSeek-OCR. Note that the Gundam-master mode is obtained
by continuing training on a pre-trained DeepSeek-OCR model with 6M sampled data. Since the
training protocol is identical to other modes, we omit the detailed description hereafter.
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3.5.1. Training DeepEncoder

Following Vary [36], we utilize a compact language model [15] and use the next token prediction
framework to train DeepEncoder. In this stage, we use all OCR 1.0 and 2.0 data aforementioned,
as well as 100M general data sampled from the LAION [31] dataset. All data is trained for
2 epochs with a batch size of 1280, using the AdamW [23] optimizer with cosine annealing
scheduler [22] and a learning rate of 5e-5. The training sequence length is 4096.

3.5.2. Training DeepSeek-OCR

After DeepEncoder is ready, we use data mentioned in Section 3.4 to train the DeepSeek-OCR.
with the entire training process conducted on the HAI-LLM [14] platform. The entire model
uses pipeline parallelism (PP) and is divided into 4 parts, with DeepEncoder taking two parts
and the decoder taking two parts. For DeepEncoder, we treat SAM and the compressor as the
vision tokenizer, place them in PP0 and freeze their parameters, while treating the CLIP part as
input embedding layer and place it in PP1 with unfrozen weights for training. For the language
model part, since DeepSeek3B-MoE has 12 layers, we place 6 layers each on PP2 and PP3. We
use 20 nodes (each with 8 A100-40G GPUs) for training, with a data parallelism (DP) of 40 and
a global batch size of 640. We use the AdamW optimizer with a step-based scheduler and an
initial learning rate of 3e-5. For text-only data, the training speed is 90B tokens/day, while for
multimodal data, the training speed is 70B tokens/day.

Table 2 | We test DeepSeek-OCR’s vision-text compression ratio using all English documents
with 600-1300 tokens from the Fox [21] benchmarks. Text tokens represent the number of tokens
after tokenizing the ground truth text using DeepSeek-OCR’s tokenizer. Vision Tokens=64 or
100 respectively represent the number of vision tokens output by DeepEncoder after resizing
input images to 512×512 and 640×640.

Text Tokens
Vision Tokens =64 Vision Tokens=100

Precision Compression Precision Compression Pages

600-700 96.5% 10.5× 98.5% 6.7× 7
700-800 93.8% 11.8× 97.3% 7.5× 28
800-900 83.8% 13.2× 96.8% 8.5× 28
900-1000 85.9% 15.1× 96.8% 9.7× 14

1000-1100 79.3% 16.5× 91.5% 10.6× 11
1100-1200 76.4% 17.7× 89.8% 11.3× 8
1200-1300 59.1% 19.7× 87.1% 12.6× 4

4. Evaluation

4.1. Vision-text Compression Study

We select Fox [21] benchmarks to verify DeepSeek-OCR’s compression-decompression capability
for text-rich documents, in order to preliminarily explore the feasibility and boundaries of
contexts optical compression. We use the English document portion of Fox, tokenize the ground
truth text with DeepSeek-OCR’s tokenizer (vocabulary size of approximately 129k), and select
documents with 600-1300 tokens for testing, which happens to be 100 pages. Since the number of
text tokens is not large, we only need to test performance in Tiny and Small modes, where Tiny
mode corresponds to 64 tokens and Small mode corresponds to 100 tokens. We use the prompt
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Table 3 | We use OmniDocBench [27] to test the performance of DeepSeek-OCR on real document
parsing tasks. All metrics in the table are edit distances, where smaller values indicate better
performance. "Tokens" represents the average number of vision tokens used per page, and
"†200dpi" means using fitz to interpolate the original image to 200dpi. For the DeepSeek-OCR
model, the values in parentheses in the "Tokens" column represent valid vision tokens, calculated
according to Equation 1.

Model Tokens
English Chinese

overall text formula table order overall text formula table order

Pipline Models

Dolphin [11] - 0.356 0.352 0.465 0.258 0.35 0.44 0.44 0.604 0.367 0.351
Marker [1] - 0.296 0.085 0.374 0.609 0.116 0.497 0.293 0.688 0.678 0.329
Mathpix [2] - 0.191 0.105 0.306 0.243 0.108 0.364 0.381 0.454 0.32 0.30
MinerU-2.1.1 [34] - 0.162 0.072 0.313 0.166 0.097 0.244 0.111 0.581 0.15 0.136
MonkeyOCR-1.2B [18] - 0.154 0.062 0.295 0.164 0.094 0.263 0.179 0.464 0.168 0.243
PPstructure-v3 [9] - 0.152 0.073 0.295 0.162 0.077 0.223 0.136 0.535 0.111 0.11

End-to-end Models

Nougat [6] 2352 0.452 0.365 0.488 0.572 0.382 0.973 0.998 0.941 1.00 0.954
SmolDocling [25] 392 0.493 0.262 0.753 0.729 0.227 0.816 0.838 0.997 0.907 0.522
InternVL2-76B [8] 6790 0.44 0.353 0.543 0.547 0.317 0.443 0.29 0.701 0.555 0.228
Qwen2.5-VL-7B [5] 3949 0.316 0.151 0.376 0.598 0.138 0.399 0.243 0.5 0.627 0.226
OLMOCR [28] 3949 0.326 0.097 0.455 0.608 0.145 0.469 0.293 0.655 0.652 0.277
GOT-OCR2.0 [38] 256 0.287 0.189 0.360 0.459 0.141 0.411 0.315 0.528 0.52 0.28
OCRFlux-3B [3] 3949 0.238 0.112 0.447 0.269 0.126 0.349 0.256 0.716 0.162 0.263
GPT4o [26] - 0.233 0.144 0.425 0.234 0.128 0.399 0.409 0.606 0.329 0.251
InternVL3-78B [42] 6790 0.218 0.117 0.38 0.279 0.095 0.296 0.21 0.533 0.282 0.161
Qwen2.5-VL-72B [5] 3949 0.214 0.092 0.315 0.341 0.106 0.261 0.18 0.434 0.262 0.168
dots.ocr [30] 3949 0.182 0.137 0.320 0.166 0.182 0.261 0.229 0.468 0.160 0.261
Gemini2.5-Pro [4] - 0.148 0.055 0.356 0.13 0.049 0.212 0.168 0.439 0.119 0.121
MinerU2.0 [34] 6790 0.133 0.045 0.273 0.15 0.066 0.238 0.115 0.506 0.209 0.122
dots.ocr†200dpi [30] 5545 0.125 0.032 0.329 0.099 0.04 0.16 0.066 0.416 0.092 0.067

DeepSeek-OCR (end2end)

Tiny 64 0.386 0.373 0.469 0.422 0.283 0.361 0.307 0.635 0.266 0.236
Small 100 0.221 0.142 0.373 0.242 0.125 0.284 0.24 0.53 0.159 0.205
Base 256(182) 0.137 0.054 0.267 0.163 0.064 0.24 0.205 0.474 0.1 0.181
Large 400(285) 0.138 0.054 0.277 0.152 0.067 0.208 0.143 0.461 0.104 0.123
Gundam 795 0.127 0.043 0.269 0.134 0.062 0.181 0.097 0.432 0.089 0.103
Gundam-M†200dpi 1853 0.123 0.049 0.242 0.147 0.056 0.157 0.087 0.377 0.08 0.085

without layout: "<image>\nFree OCR." to control the model’s output format. Nevertheless, the
output format still cannot completely match Fox benchmarks, so the actual performance would
be somewhat higher than the test results.

As shown in Table 2, within a 10× compression ratio, the model’s decoding precision can
reach approximately 97%, which is a very promising result. In the future, it may be possible to
achieve nearly 10× lossless contexts compression through text-to-image approaches. When the
compression ratio exceeds 10×, performance begins to decline, which may have two reasons:
one is that the layout of long documents becomes more complex, and another reason may be
that long texts become blurred at 512×512 or 640×640 resolution. The first issue can be solved
by rendering texts onto a single layout page, while we believe the second issue will become
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a feature of the forgetting mechanism. When compressing tokens by nearly 20×, we find that
precision can still approach 60%. These results indicate that optical contexts compression is
a very promising and worthwhile research direction, and this approach does not bring any
overhead because it can leverage VLM infrastructure, as multimodal systems inherently require
an additional vision encoder.

Table 4 | Edit distances for different categories of documents in OmniDocBench. The results
show that some types of documents can achieve good performance with just 64 or 100 vision
tokens, while others require Gundam mode.

Mode
Type

Book Slides
Financial

Report Textbook
Exam
Paper Magazine

Academic
Papers Notes Newspaper Overall

Tiny 0.147 0.116 0.207 0.173 0.294 0.201 0.395 0.297 0.94 0.32
Small 0.085 0.111 0.079 0.147 0.171 0.107 0.131 0.187 0.744 0.205
Base 0.037 0.08 0.027 0.1 0.13 0.073 0.052 0.176 0.645 0.156

Large 0.038 0.108 0.022 0.084 0.109 0.06 0.053 0.155 0.353 0.117
Gundam 0.035 0.085 0.289 0.095 0.094 0.059 0.039 0.153 0.122 0.083

Guandam-M 0.052 0.09 0.034 0.091 0.079 0.079 0.048 0.1 0.099 0.077

4.2. OCR Practical Performance

DeepSeek-OCR is not only an experimental model; it has strong practical capabilities and can
construct data for LLM/VLM pretraining. To quantify OCR performance, we test DeepSeek-
OCR on OmniDocBench [27], with results shown in Table 3. Requiring only 100 vision tokens
(640×640 resolution), DeepSeek-OCR surpasses GOT-OCR2.0 [38] which uses 256 tokens; with
400 tokens (285 valid tokens, 1280×1280 resolution), it achieves on-par performance with state-
of-the-arts on this benchmark. Using fewer than 800 tokens (Gundam mode), DeepSeek-OCR
outperforms MinerU2.0 [34] which needs nearly 7,000 vision tokens. These results demonstrate
that our DeepSeek-OCR model is powerful in practical applications, and because the higher
tokens compression, it enjoys a higher research ceiling.

As shown in Table 4, some categories of documents require very few tokens to achieve
satisfactory performance, such as slides which only need 64 vision tokens. For book and
report documents, DeepSeek-OCR can achieve good performance with only 100 vision tokens.
Combined with the analysis from Section 4.1, this may be because most text tokens in these
document categories are within 1,000, meaning the vision-token compression ratio does not
exceed 10×. For newspapers, Gundam or even Gundam-master mode is required to achieve
acceptable edit distances, because the text tokens in newspapers are 4-5,000, far exceeding the
10× compression of other modes. These experimental results further demonstrate the boundaries
of contexts optical compression, which may provide effective references for researches on the
vision token optimization in VLMs and context compression, forgetting mechanisms in LLMs.

4.3. Qualitative Study

4.3.1. Deep parsing

DeepSeek-OCR possesses both layout and OCR 2.0 capabilities, enabling it to further parse
images within documents through secondary model calls, a feature we refer to as "deep parsing".
As shown in Figures 7,8,9,10, our model can perform deep parsing on charts, geometry, chemical
formulas, and even natural images, requiring only a unified prompt.
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<image>\n<|grounding|>Convert the document to markdown.

<image>\nParse the figure.

Input image Result

RenderingDeep Parsing

Figure 7 | In the field of financial research reports, the deep parsing mode of DeepSeek-OCR
can be used to obtain structured results of charts within documents. Charts are a crucial form
of data representation in finance and scientific fields, and the chart structured extraction is an
indispensable capability for future OCR models.
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Input image Result

Rendering

The image depicts an indoor classroom setting with a group of children and an 

adult. The children are seated on the floor, facing a woman who is standing and 

appears to be reading or presenting to them. The woman is wearing a brown 

sweater and blue jeans. The children are dressed in various colors, with some 

wearing short pants and others in long pants.

The classroom has a green wall with educational posters and a bulletin board. 

The floor is covered with a gray carpet. To the left, there is a wooden dresser with 

a drawer partially open, and a chair is visible behind it. On the right side of the 

image, there is a purple bean bag chair.

The children are engaged with the woman, with some looking at her and others 

looking down or away. The room is well-lit, and the overall atmosphere seems to 

be one of attentiveness and learning.

The text "BIBLIOTECA" is visible on the wall, suggesting that the room may be 

part of a library or a section dedicated to books. The presence of educational 

materials and the organized layout of the room indicate that this is a space 

designed for learning and reading.

<image>\nParse the figure.

Deep Parsing

<image>\n<|grounding|>Convert the document to markdown.

Figure 8 | For books and articles, the deep parsing mode can output dense captions for natural
images in the documents. With just a prompt, the model can automatically identify what type
of image it is and output the required results.
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Input image Result

<image>\nParse the figure.

Deep Parsing

<image>\n<|grounding|>Convert the document to markdown.

Rendering

Figure 9 | DeepSeek-OCR in deep parsing mode can also recognize chemical formulas within
chemical documents and convert them to SMILES format. In the future, OCR 1.0+2.0 technology
may play a significant role in the development of VLM/LLM in STEM fields.

15



Input image Result

<image>\nParse the figure.

<image>\n<|grounding|>Convert the document to markdown.

RenderingDeep Parsing

Figure 10 | DeepSeek-OCR also possesses the capability to copy (structure) simple planar
geometric figures. Due to the intricate interdependencies among line segments in geometric
shapes, parsing geometry task is extremely challenging and has a long way to go.

4.3.2. Multilingual recognition

PDF data on the Internet contains not only Chinese and English, but also a large amount of
multilingual data, which is also crucial when training LLMs. For PDF documents, DeepSeek-
OCR can handle nearly 100 languages. Like Chinese and English documents, multilingual data
also supports both layout and non-layout OCR formats. The visualization results are shown in
Figure 11, where we select Arabic and Sinhala languages to demonstrate results.
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<image>\nFree OCR.

<image>\n<|grounding|>Convert the document to markdown.

Figure 11 | To endow the capability of processing widely crawled PDFs (multilingual data), we
train our model with OCR capabilities for nearly 100 languages. Minority language documents
can also support both layout and non-layout outputs through different prompts.

4.3.3. General vision understanding

We also provide DeepSeek-OCR with a certain degree of general image understanding capabili-
ties. The related visualization results are shown in Figure 12.
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<image>\nLocate <|ref|>11-2=<|/ref|> in the image.

A green plastic container labeled for food storage purposes. The lid is yellow and 

appears slightly worn out.

On the front label:

- At the top left corner, some Chinese characters.

- In bold black letters near the center-top reads "6月香" (June Fragrance).

- Below that, smaller white font states "鲜甜咸香" which translates roughly to "Fresh 

Sweet Salty Fragrant."

- Dominating the middle part of the label is large lettering stating "豆瓣酱," meaning 

"Bean Paste Sauce."

Additional Information includes:

- A small circular logo indicating quality assurance ("优质品").

- An illustration showing what seems like a dish made using bean paste sauce.

- Text below the main title says "专注25年，只做原酿酱" translating to "Focusing 

since 1998, only making authentic fermented bean paste." 

- On the bottom right side, additional product specifications include "净含量：500g".

Overall Style/Type:

It looks like commercial packaging designed specifically for preserving food items 

within the jar. It has clear labeling intended for easy identification and 

understanding among consumers who read Mandarin. 

Note: There might be slight variations due to handwriting styles but overall 

maintains readability regarding brand identity and contents description.

<image>\nDescribe this image in detail.

<image>\nLocate <|ref|>the teacher<|/ref|> in the image.

<image>\n这是一张

<image>\nIdentify all objects in the image and output them in 

bounding boxes.

照片，展示了一辆红色的消

防栓。消防栓上有一个笑

脸，显得非常友好和亲切。

消防栓的顶部有一个黑色的

盖子，周围有一些金属铆

钉。在消防栓的底部，有一

个粉红色的贴纸，上面写着

“bowtie”。背景中可以看

到一条街道，街道上有几辆

停放的汽车和一些树木。整

体画面给人一种温馨和友好

的感觉。

<image>\n<|grounding|>OCR the image.

君不见，黄河之水天上来

，奔流到海不复回。君不见，高堂明镜悲白发，

朝如青丝暮成雪。人生得意须尽欢，莫使金樽空

对月。天生我材必有用，千金散尽还复来。烹羊

宰牛且为乐，会须一饮三百杯。岑夫子，丹丘

生，将进酒，杯莫停。与君歌一曲，请君为我倾

耳听。钟鼓馔玉不足贵，但愿长醉不愿醒。古来

圣贤皆寂寞，惟有饮者留其名。陈王昔时宴平

乐，斗酒十千恣欢谑。主人何为言少钱，径须沽

取对君酌。五花马，千金裘，呼儿将出换美酒，

与尔同销万古愁。

Figure 12 | We retain DeepSeek-OCR’s capabilities in general visual understanding, mainly
including image description, object detection, grounding, etc. Meanwhile, due to the inclusion
of text-only data, DeepSeek-OCR’s language capabilities are also retained. Note that since
we do not include SFT (Supervised Fine-Tuning) stage, the model is not a chatbot, and some
capabilities need completion prompts to be activated.

5. Discussion

Our work represents an initial exploration into the boundaries of vision-text compression, inves-
tigating how many vision tokens are required to decode 𝑁 text tokens. The preliminary results
are encouraging: DeepSeek-OCR achieves near-lossless OCR compression at approximately
10× ratios, while 20× compression still retains 60% accuracy. These findings suggest promising
directions for future applications, such as implementing optical processing for dialogue histories
beyond 𝑘 rounds in multi-turn conversations to achieve 10× compression efficiency.
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Time →

Just happened

Crystal Clear

1 hour

Very Clear Clear

1 day 1 week 1 month 1 year

Blurry Very Blurry Almost Gone

Distance↑

10cm

Crystal Clear

50cm

Very Clear Clear

1m 3m 10m 20m

Blurry Very Blurry Almost Gone

Resolution↓

Crystal Clear

Gundam

Very Clear Clear

Large Base Small Tiny

Blurry Very Blurry Almost Gone

Text token

Memory

Vision

Text

Figure 13 | Forgetting mechanisms constitute one of the most fundamental characteristics of
human memory. The contexts optical compression approach can simulate this mechanism by
rendering previous rounds of historical text onto images for initial compression, then progres-
sively resizing older images to achieve multi-level compression, where token counts gradually
decrease and text becomes increasingly blurred, thereby accomplishing textual forgetting.

For older contexts, we could progressively downsizing the rendered images to further reduce
token consumption. This assumption draws inspiration from the natural parallel between
human memory decay over time and visual perception degradation over spatial distance—both
exhibit similar patterns of progressive information loss, as shown in Figure 13. By combining
these mechanisms, contexts optical compression method enables a form of memory decay that
mirrors biological forgetting curves, where recent information maintains high fidelity while
distant memories naturally fade through increased compression ratios.

While our initial exploration shows potential for scalable ultra-long context processing,
where recent contexts preserve high resolution and older contexts consume fewer resources,
we acknowledge this is early-stage work that requires further investigation. The approach
suggests a path toward theoretically unlimited context architectures that balance information
retention with computational constraints, though the practical implications and limitations of
such vision-text compression systems warrant deeper study in future research.

6. Conclusion

In this technical report, we propose DeepSeek-OCR and preliminarily validate the feasibility of
contexts optical compression through this model, demonstrating that the model can effectively
decode text tokens exceeding 10 times the quantity from a small number of vision tokens. We
believe this finding will facilitate the development of VLMs and LLMs in the future. Addi-
tionally, DeepSeek-OCR is a highly practical model capable of large-scale pretraining data
production, serving as an indispensable assistant for LLMs. Of course, OCR alone is insufficient
to fully validate true context optical compression and we will conduct digital-optical text in-
terleaved pretraining, needle-in-a-haystack testing, and other evaluations in the future. From
another perspective, optical contexts compression still offers substantial room for research and
improvement, representing a promising new direction.
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